10 research outputs found

    From Perception to Activation: The Molecular-Genetic and Biochemical Landscape of Disease Resistance Signaling in Plants

    No full text
    More than 60 years ago, H.H. Flor proposed the “Gene-for-Gene” hypothesis, which described the genetic relationship between host plants and pathogens. In the decades that followed Flor's seminal work, our understanding of the plant-pathogen interaction has evolved into a sophisticated model, detailing the molecular genetic and biochemical processes that control host-range, disease resistance signaling and susceptibility. The interaction between plants and microbes is an intimate exchange of signals that has evolved for millennia, resulting in the modification and adaptation of pathogen virulence strategies and host recognition elements. In total, plants have evolved mechanisms to combat the ever-changing landscape of biotic interactions bombarding their environment, while in parallel, plant pathogens have co-evolved mechanisms to sense and adapt to these changes. On average, the typical plant is susceptible to attack by dozens of microbial pathogens, yet in most cases, remains resistant to many of these challenges. The sum of research in our field has revealed that these interactions are regulated by multiple layers of intimately linked signaling networks. As an evolved model of Flor's initial observations, the current paradigm in host-pathogen interactions is that pathogen effector molecules, in large part, drive the recognition, activation and subsequent physiological responses in plants that give rise to resistance and susceptibility. In this Chapter, we will discuss our current understanding of the association between plants and microbial pathogens, detailing the pressures placed on both host and microbe to either maintain disease resistance, or induce susceptibility and disease. From recognition to transcriptional reprogramming, we will review current data and literature that has advanced the classical model of the Gene-for-Gene hypothesis to our current understanding of basal and effector triggered immunity

    Chemical Signals in Plant Resistance: Salicylic Acid

    No full text

    Salicylic Acid in Plant Disease Resistance

    No full text

    Signaling in Plant Resistance Responses: Divergence and Cross-Talk of Defense Pathways

    No full text

    Salicylic Acid as a Defense-Related Plant Hormone

    No full text

    Role of Salicylic Acid in the Induction of Abiotic Stress Tolerance

    No full text

    Salicylic Acid Biosynthesis and Metabolism

    No full text
    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented

    Salicylic Acid and Reactive Oxygen Species in the Activation of Stress Defense Genes

    No full text

    Flower Development

    No full text
    Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies
    corecore