57 research outputs found
Potent and selective inhibitors of the TASK-1 potassium channel through chemical optimization of a bis-amide scaffold
TASK-1 is a two-pore domain potassium channel that is important to modulating cell excitability, most notably in the context of neuronal pathways. In order to leverage TASK-1 for therapeutic benefit, its physiological role needs better characterization; however, designing selective inhibitors that avoid the closely related TASK-3 channel has been challenging. In this study, a series of bis-amide derived compounds were found to demonstrate improved TASK-1 selectivity over TASK-3 compared to reported inhibitors. Optimization of a marginally selective hit led to analog 35 which displays a TASK-1 IC 50 = 16 nM with 62-fold selectivity over TASK-3 in an orthogonal electrophysiology assay
Quantum Rotation of HCN and DCN in Helium-4
We present calculations of rotational absorption spectra of the molecules HCN
and DCN in superfluid helium-4, using a combination of the Diffusion Monte
Carlo method for ground state properties and an analytic many-body method
(Correlated Basis Function theory) for the excited states. Our results agree
with the experimentally determined effective moment of inertia which has been
obtained from the spectral transition. The correlated basis function
analysis shows that, unlike heavy rotors such as OCS, the J=2 and higher
rotational excitations of HCN and DCN have high enough energy to strongly
couple to rotons, leading to large shifts of the lines and accordingly to
anomalous large spectroscopic distortion constants, to the emergence of
roton-maxon bands, and to secondary peaks in the absorption spectra for J=2 and
J=3.Comment: accepted by Phys. Rev. B; changes: included referee suggestions,
removed typos, added 10 ref
High-throughput screening identifies a bisphenol inhibitor of SV40 large T antigen ATPase activity
The authors conducted a high-throughput screening campaign for inhibitors of SV40 large T antigen ATPase activity to identify candidate antivirals that target the replication of polyomaviruses. The primary assay was adapted to 1536-well microplates and used to screen the National Institutes of Health Molecular Libraries Probe Centers Network library of 306 015 compounds. The primary screen had an Z value of ∼0.68, signal/background = 3, and a high (5%) DMSO tolerance. Two counterscreens and two secondary assays were used to prioritize hits by EC50, cytotoxicity, target specificity, and off-target effects. Hits that inhibited ATPase activity by >44% in the primary screen were tested in dose-response efficacy and eukaryotic cytotoxicity assays. After evaluation of hit cytotoxicity, drug likeness, promiscuity, and target specificity, three compounds were chosen for chemical optimization. Chemical optimization identified a class of bisphenols as the most effective biochemical inhibitors. Bisphenol A inhibited SV40 large T antigen ATPase activity with an IC50 of 41 μM in the primary assay and 6.2 μM in a cytoprotection assay. This compound class is suitable as probes for biochemical investigation of large T antigen ATPase activity, but because of their cytotoxicity, further optimization is necessary for their use in studying polyomavirus replication in vivo
A selective ATP-binding cassette subfamily G member 2 efflux inhibitor revealed via high-throughput flow cytometry
Chemotherapeutics tumor resistance is a principal reason for treatment failure, and clinical and experimental data indicate that multidrug transporters such as ATP-binding cassette (ABC) B1 and ABCG2 play a leading role by preventing cytotoxic intracellular drug concentrations. Functional efflux inhibition of existing chemotherapeutics by these pumps continues to present a promising approach for treatment. A contributing factor to the failure of existing inhibitors in clinical applications is limited understanding of specific substrate/inhibitor/pump interactions. We have identified selective efflux inhibitors by profiling multiple ABC transporters against a library of small molecules to find molecular probes to further explore such interactions. In our primary screening protocol using JC-1 as a dual-pump fluorescent reporter substrate, we identified a piperazine-substituted pyrazolo[1,5-a]pyrimidine substructure with promise for selective efflux inhibition. As a result of a focused structure-activity relationship (SAR)-driven chemistry effort, we describe compound 1 (CID44640177), an efflux inhibitor with selectivity toward ABCG2 over ABCB1. Compound 1 is also shown to potentiate the activity of mitoxantrone in vitro as well as preliminarily in vivo in an ABCG2-overexpressing tumor model. At least two analogues significantly reduce tumor size in combination with the chemotherapeutic topotecan. To our knowledge, low nanomolar chemoreversal activity coupled with direct evidence of efflux inhibition for ABCG2 is unprecedented
Arm reactions evoked by the initial exposure to a small balance perturbation: a pilot study
Item does not contain fulltextPerturbation of whole-body stability often evokes rapid arm reactions. It has been suggested that the earliest arm activation is a generic (e.g. startle-like) response to which a later stabilizing (e.g. counterweight or reach-to-grasp) or impact-protection component can be appended. To examine whether the initial part of the reaction is generic, we examined arm reactions evoked by small balance perturbations in 12 healthy young adults while varying perturbation direction (rightward or forward platform translation) and environmental conditions (handrail present or absent). The perturbation magnitude was selected to be sufficiently small to obviate the need to use the arms for stabilization. To avoid adaptation or habituation, analysis focused on each subject's very first exposure to the perturbation. Most subjects exhibited active movement of both arms in reaction to the perturbation, but there was large (non-stereotypical) inter-subject variation in muscle-onset latency and arm kinematics. Furthermore, the velocity and direction of the initial arm movement were affected by perturbation direction, in a manner consistent with functional strategies (counterweight strategy in backward falls, hybrid counterweight/protective strategy in leftward falls). Although subjects never contacted the handrail, responses were slower when it was present. These results are not consistent with a generic stereotyped response, but suggest instead that even the earliest component of first-trial arm reactions was functionally modulated
- …