2,104 research outputs found

    CRiBAC: Community-centric role interaction based access control model

    Get PDF
    As one of the most efficient solutions to complex and large-scale problems, multi-agent cooperation has been in the limelight for the past few decades. Recently, many research projects have focused on context-aware cooperation to dynamically provide complex services. As cooperation in the multi-agent systems (MASs) becomes more common, guaranteeing the security of such cooperation takes on even greater importance. However, existing security models do not reflect the agents' unique features, including cooperation and context-awareness. In this paper, we propose a Community-based Role interaction-based Access Control model (CRiBAC) to allow secure cooperation in MASs. To do this, we refine and extend our preliminary RiBAC model, which was proposed earlier to support secure interactions among agents, by introducing a new concept of interaction permission, and then extend it to CRiBAC to support community-based cooperation among agents. We analyze potential problems related to interaction permissions and propose two approaches to address them. We also propose an administration model to facilitate administration of CRiBAC policies. Finally, we present the implementation of a prototype system based on a sample scenario to assess the proposed work and show its feasibility. © 2012 Elsevier Ltd. All rights reserved

    Hawking Radiation as Quantum Tunneling in Rindler Coordinate

    Full text link
    We substantiate the Hawking radiation as quantum tunneling of fields or particles crossing the horizon by using the Rindler coordinate. The thermal spectrum detected by an accelerated particle is interpreted as quantum tunneling in the Rindler spacetime. Representing the spacetime near the horizon locally as a Rindler spacetime, we find the emission rate by tunneling, which is expressed as a contour integral and gives the correct Boltzmann factor. We apply the method to non-extremal black holes such as a Schwarzschild black hole, a non-extremal Reissner-Nordstr\"{o}m black hole, a charged Kerr black hole, de Sitter space, and a Schwarzschild-anti de Sitter black hole.Comment: LaTex 19 pages, no figure; references added and replaced by the version accepted in JHE

    It is hard to see a needle in a haystack: Modeling contrast masking effect in a numerical observer

    Full text link
    Within the framework of a virtual clinical trial for breast imaging, we aim to develop numerical observers that follow the same detection performance trends as those of a typical human observer. In our prior work, we showed that by including spatiotemporal contrast sensitivity function (stCSF) of human visual system (HVS) in a multi-slice channelized Hotelling observer (msCHO), we can correctly predict trends of a typical human observer performance with the viewing parameters of browsing speed, viewing distance and contrast. In this work we further improve our numerical observer by modeling contrast masking. After stCSF, contrast masking is the second most prominent property of HVS and it refers to the fact that the presence of one signal affects the visibility threshold for another signal. Our results indicate that the improved numerical observer better predicts changes in detection performance with background complexity

    Low-Loss All-Optical Zeno Switch in a Microdisk Cavity Using EIT

    Full text link
    We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the classical Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent field which suppresses the cavity field buildup and alters the path of a weak signal beam. We predict more than 35 dB of switching contrast with less than 0.1 dB loss using just 2 micro-Watts of control-beam power for signal beams with less than single photon intensities inside the cavity.Comment: Updated with new references, corrected Eq 2a, and added introductory text. 7 pages, 5 figures, 3 table

    Optimal Space-Time Transceiver Design for Selective Wireless Broadcast With Channel State Information

    Full text link

    P-A Measurements in the 48-Ca(p,n)48-Sc Reaction at 135 MeV

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Time evolution of damage under variable ranges of load transfer

    Full text link
    We study the time evolution of damage in a fiber bundle model in which the range of interaction of fibers varies through an adjustable stress transfer function recently introduced. We find that the lifetime of the material exhibits a crossover from mean field to short range behavior as in the static case. Numerical calculations showed that the value at which the transition takes place depends on the system's disorder. Finally, we have performed a microscopic analysis of the failure process. Our results confirm that the growth dynamics of the largest crack is radically different in the two limiting regimes of load transfer during the first stages of breaking.Comment: 8 pages, 7 figures, revtex4 styl

    Reduced-state MIMO sequence detection with application to EDGE systems

    Full text link

    Fragmentation of High-spin Stretched States in the (p,n) Reaction on 36-Ar and 40-Ca

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Search for a State at E_x = 2.6MeV in 20-Na via the 20-Ne(p,n)20-Na Reaction and Possible Breakout from the Hot CNO Cycle

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478
    corecore