433 research outputs found
Radiation Damage of F8 Lead Glass with 20 MeV Electrons
Using a 20 MeV linear accelerator, we investigate the effects of
electromagnetic radiation on the optical transparency of F8 lead glass.
Specifically, we measure the change in attenuation length as a function of
radiation dose. Comparing our results to similar work that utilized a proton
beam, we conclude that F8 lead glass is more susceptible to proton damage than
electron damage.Comment: 5 pages, 6 figure
Aspects of meson properties in dense nuclear matter
We investigate the modification of meson spectral densities in dense nuclear
matter at zero temperature. These effects are studied in a fully relativistic
mean field model which goes beyond the linear density approximation and also
includes baryon resonances. In particular, the role of N*(1520) and N*(1720) on
the rho meson spectral density is highlighted. Even though the nucleon-nucleon
loop and the nucleon-resonance loop contribute with the opposite sign, an
overall reduction of rho meson mass is still observed at high density.
Importantly, it is shown that the resonances cause substantial broadening of
the rho meson spectral density in matter and also induces non-trivial momentum
dependence. The spectral density of the a0 meson is also shown. We study the
dispersion relations and collective oscillations induced by the rho meson
propagation in nuclear matter together with the influence of the mixing of rho
with the a0 meson. The relevant expression for the plasma frequency is also
recovered analytically in the appropriate limit.Comment: 19 pages, 17 figure
Failure due to fatigue in fiber bundles and solids
We consider first a homogeneous fiber bundle model where all the fibers have
got the same stress threshold beyond which all fail simultaneously in absence
of noise. At finite noise, the bundle acquires a fatigue behavior due to the
noise-induced failure probability at any stress. We solve this dynamics of
failure analytically and show that the average failure time of the bundle
decreases exponentially as the stress increases. We also determine the
avalanche size distribution during such failure and find a power law decay. We
compare this fatigue behavior with that obtained phenomenologically for the
nucleation of Griffith cracks. Next we study numerically the fatigue behavior
of random fiber bundles having simple distributions of individual fiber
strengths, at stress less than the bundle's strength (beyond which it fails
instantly). The average failure time is again seen to decrease exponentially as
the stress increases and the avalanche size distribution shows similar power
law decay. These results are also in broad agreement with experimental
observations on fatigue in solids. We believe, these observations regarding the
failure time are useful for quantum breakdown phenomena in disordered systems.Comment: 13 pages, 4 figures, figures added and the text is revise
The large-N(c) nuclear potential puzzle
An analysis of the baryon-baryon potential from the point of view of
large-N(c) QCD is performed. A comparison is made between the N(c)-scaling
behavior directly obtained from an analysis at the quark-gluon level to the
N(c)-scaling of the potential for a generic hadronic field theory in which it
arises via meson exchanges and for which the parameters of the theory are given
by their canonical large-N(c) scaling behavior. The purpose of this comparison
is to use large-N(c) consistency to test the widespread view that the
interaction between nuclei arises from QCD through the exchange of mesons.
Although at the one- and two-meson exchange level the scaling rules for the
potential derived from the hadronic theory matches the quark-gluon level
prediction, at the three- and higher-meson exchange level a generic hadronic
theory yields a potential which scales with N(c) faster than that of the
quark-gluon theory.Comment: 17 pages, LaTeX, 5 figure
Elementary excitations of trapped Bose gas in the large-gas-parameter regime
We study the effect of going beyond the Gross-Pitaevskii theory on the
frequencies of collective oscillations of a trapped Bose gas in the large gas
parameter regime. We go beyond the Gross-Pitaevskii regime by including a
higher-order term in the interatomic correlation energy. To calculate the
frequencies we employ the sum-rule approach of many-body response theory
coupled with a variational method for the determination of ground-state
properties. We show that going beyond the Gross-Pitaevskii approximation
introduces significant corrections to the collective frequencies of the
compressional mode.Comment: 17 pages with 4 figures. To be published in Phys. Rev.
Corrections to Hawking-like Radiation for a Friedmann-Robertson-Walker Universe
Recently, a Hamilton-Jacobi method beyond semiclassical approximation in
black hole physics was developed by \emph{Banerjee} and
\emph{Majhi}\cite{beyond0}. In this paper, we generalize their analysis of
black holes to the case of Friedmann-Robertson-Walker (FRW) universe. It is
shown that all the higher order quantum corrections in the single particle
action are proportional to the usual semiclassical contribution. The
corrections to the Hawking-like temperature and entropy of apparent horizon for
FRW universe are also obtained. In the corrected entropy, the area law involves
logarithmic area correction together with the standard inverse power of area
term.Comment: 10 pages, no figures, comments are welcome; v2: references added and
some typoes corrected, to appear in Euro.Phys.J.C; v3:a defect corrected. We
thank Dr.Elias Vagenas for pointing out a defect of our pape
Neutron star properties in the quark-meson coupling model
The effects of internal quark structure of baryons on the composition and
structure of neutron star matter with hyperons are investigated in the
quark-meson coupling (QMC) model. The QMC model is based on mean-field
description of nonoverlapping spherical bags bound by self-consistent exchange
of scalar and vector mesons. The predictions of this model are compared with
quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear
matter saturation properties. By employing a density dependent bag constant
through direct coupling to the scalar field, the QMC model is found to exhibit
identical properties as QHD near saturation density. Furthermore, this modified
QMC model provides well-behaved and continuous solutions at high densities
relevant to the core of neutron stars. Two additional strange mesons are
introduced which couple only to the strange quark in the QMC model and to the
hyperons in the QHD model. The constitution and structure of stars with
hyperons in the QMC and QHD models reveal interesting differences. This
suggests the importance of quark structure effects in the baryons at high
densities.Comment: 28 pages, 10 figures, to appear in Physical Review
The Role of Color Neutrality in Nuclear Physics--Modifications of Nucleonic Wave Functions
The influence of the nuclear medium upon the internal structure of a
composite nucleon is examined. The interaction with the medium is assumed to
depend on the relative distances between the quarks in the nucleon consistent
with the notion of color neutrality, and to be proportional to the nucleon
density. In the resulting description the nucleon in matter is a superposition
of the ground state (free nucleon) and radial excitations. The effects of the
nuclear medium on the electromagnetic and weak nucleon form factors, and the
nucleon structure function are computed using a light-front constituent quark
model. Further experimental consequences are examined by considering the
electromagnetic nuclear response functions. The effects of color neutrality
supply small but significant corrections to predictions of observables.Comment: 37 pages, postscript figures available on request to
[email protected]
Hawking Radiation and Tunneling Mechanism for a New Class of Black Holes in Einstein-Gauss-Bonnet Gravity
We study the Hawking radiation in a new class of black hole solutions in the
Einstein-Gauss-Bonnet theory. The black hole has been argued to have vanishing
mass and entropy, but finite Hawking temperature. To check if it really emits
radiation, we analyse the Hawking radiation using the original method of
quantization of scalar field in the black hole background and the quantum
tunneling method, and confirm that it emits radiation at the Hawking
temperature. A general formula is derived for the Hawking temperature and
backreaction in the tunneling approach. Physical implications of these results
are discussed.Comment: 12 pages, v2: Title slightly changed. Motivation and discussions are
elaborated, v3: typos corrected to match the published versio
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
- âŠ