17 research outputs found

    The Abundance of New Kind of Dark Matter Structures

    Full text link
    A new kind of dark matter structures, ultracompact minihalos (UCMHs) was proposed recently. They would be formed during the radiation dominated epoch if the large density perturbations are existent. Moreover, if the dark matter is made up of weakly interacting massive particles, the UCMHs can have effect on cosmological evolution because of the high density and dark matter annihilation within them. In this paper, one new parameter is introduced to consider the contributions of UCMHs due to the dark matter annihilation to the evolution of cosmology, and we use the current and future CMB observations to obtain the constraint on the new parameter and then the abundance of UCMHs. The final results are applicable for a wider range of dark matter parametersComment: 4 pages, 1 tabl

    Olber's Paradox for Superluminal Neutrinos: Constraining Extreme Neutrino Speeds at TeV-ZeV Energies with the Diffuse Neutrino Background

    Full text link
    The only invariant speed in special relativity is c; therefore, if some neutrinos travel at even tiny speeds above c, normal special relativity is incomplete and any superluminal speed may be possible. I derive a limit on superluminal neutrino speeds v >> c at high energies by noting that such speeds would increase the size of the neutrino horizon. The increased volume of the Universe visible leads to a brighter astrophysical neutrino background. The nondetection of "guaranteed" neutrino backgrounds from star-forming galaxies and ultrahigh energy cosmic rays (UHECRs) constrains v/c at TeV--ZeV energies. I find that v/c <= 820 at 60 TeV from the nondetection of neutrinos from star-forming galaxies. The nondetection of neutrinos from UHECRs constrains v/c to be less than 2500 at 0.1 EeV in a pessimistic model and less than 4.6 at 4 EeV in an optimistic model. The UHECR neutrino background nondetection is strongly inconsistent with a naive quadratic extrapolation of the OPERA results to EeV energies. The limits apply subject to some caveats, particularly that the expected pionic neutrino backgrounds exist and that neutrinos travel faster than c when they pass the detector. They could be improved substantially as the expected neutrino backgrounds are better understood and with new experimental neutrino background limits. I also point out that extremely subluminal speeds would result in a much smaller neutrino background intensity than expected.Comment: 13 pages, 2 figures, fixed titl

    Background model systematics for the Fermi GeV excess

    Full text link
    The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of different phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the first comprehensive study of model systematics coming from the Galactic diffuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excess emission at Galactic latitudes 2∘<∣b∣<20∘2^\circ<|b|<20^\circ and 300 MeV to 500 GeV. We study both theoretical and empirical model systematics, which we deduce from a large range of Galactic diffuse emission models and a principal component analysis of residuals in numerous test regions along the Galactic plane. We show that the hypothesis of an extended spherical excess emission with a uniform energy spectrum is compatible with the Fermi-LAT data in our region of interest at 95%95\% CL. Assuming that this excess is the extended counterpart of the one seen in the inner few degrees of the Galaxy, we derive a lower limit of 10.0∘10.0^\circ (95%95\% CL) on its extension away from the GC. We show that, in light of the large correlated uncertainties that affect the subtraction of the Galactic diffuse emission in the relevant regions, the energy spectrum of the excess is equally compatible with both a simple broken power-law of break energy 2.1±0.22.1\pm0.2 GeV, and with spectra predicted by the self-annihilation of dark matter, implying in the case of bˉb\bar{b}b final states a dark matter mass of 49−5.4+6.449^{+6.4}_{-5.4} GeV.Comment: 65 pages, 28 figures, 7 table
    corecore