78 research outputs found
Spin Relaxation Caused by Thermal Excitations of High Frequency Modes of Cantilever Vibrations
We consider the process of spin relaxation in the oscillating
cantilever-driven adiabatic reversals technique in magnetic resonance force
microscopy. We simulated the spin relaxation caused by thermal excitations of
the high frequency cantilever modes in the region of the Rabi frequency of the
spin sub-system. The minimum relaxation time obtained in our simulations is
greater but of the same order of magnitude as one measured in recent
experiments. We demonstrated that using a cantilever with nonuniform
cross-sectional area may significantly increase spin relaxation time.Comment: 12 pages RevTe
Stationary cantilever vibrations in the oscillating cantilever-driven adiabatic reversals -- magnetic resonance force microscopy technique
We consider theoretically the novel technique in magnetic resonance force
microscopy which is called ``oscillating cantilever-driven adiabatic
reversals''. We present analytical and numerical analysis for the stationary
cantilever vibrations in this technique. For reasonable values of parameters we
estimate the resonant frequency shift as 6Hz per the Bohr magneton. We analyze
also the regime of small oscillations of the paramagnetic moment near the
transversal plane and the frequency shift of the damped cantilever vibrations.Comment: 12 pages RevTex
Transient Dynamics in Magnetic Force Microscopy for a Single-Spin Measurement
We analyze a single-spin measurement using a transient process in magnetic
force microscopy (MFM) which could increase the maximum operating temperature
by a factor of Q (the quality factor of the cantilever) in comparison with the
static Stern-Gerlach effect. We obtain an exact solution of the master
equation, which confirms this result. We also discuss the conditions required
to create a macroscopic Schrodinger cat state in the cantilever.Comment: 22 pages 2 figure
Single-Spin Measurement and Decoherence in Magnetic Resonance Force Microscopy
We consider a simple version of a cyclic adiabatic inversion (CAI) technique
in magnetic resonance force microscopy (MRFM). We study the problem: What
component of the spin is measured in the CAI MRFM? We show that the
non-destructive detection of the cantilever vibrations provides a measurement
of the spin component along the effective magnetic field. This result is based
on numerical simulations of the Hamiltonian dynamics (the Schrodinger equation)
and the numerical solution of the master equation.Comment: 5 pages + 5 figures (PNG format
Low-Loss All-Optical Zeno Switch in a Microdisk Cavity Using EIT
We present theoretical results of a low-loss all-optical switch based on
electromagnetically induced transparency and the classical Zeno effect in a
microdisk resonator. We show that a control beam can modify the atomic
absorption of the evanescent field which suppresses the cavity field buildup
and alters the path of a weak signal beam. We predict more than 35 dB of
switching contrast with less than 0.1 dB loss using just 2 micro-Watts of
control-beam power for signal beams with less than single photon intensities
inside the cavity.Comment: Updated with new references, corrected Eq 2a, and added introductory
text. 7 pages, 5 figures, 3 table
Realistic simulations of single-spin nondemolition measurement by magnetic resonance force microscopy
A requirement for many quantum computation schemes is the ability to measure
single spins. This paper examines one proposed scheme: magnetic resonance force
microscopy, including the effects of thermal noise and back-action from
monitoring. We derive a simplified equation using the adiabatic approximation,
and produce a stochastic pure state unraveling which is useful for numerical
simulations.Comment: 33 pages LaTeX, 9 figure files in EPS format. Submitted to Physical
Review
Non-Vacuum Bianchi Types I and V in f(R) Gravity
In a recent paper \cite{1}, we have studied the vacuum solutions of Bianchi
types I and V spacetimes in the framework of metric f(R) gravity. Here we
extend this work to perfect fluid solutions. For this purpose, we take stiff
matter to find energy density and pressure of the universe. In particular, we
find two exact solutions in each case which correspond to two models of the
universe. The first solution gives a singular model while the second solution
provides a non-singular model. The physical behavior of these models has been
discussed using some physical quantities. Also, the function of the Ricci
scalar is evaluated.Comment: 15 pages, accepted for publication in Gen. Realtiv. Gravi
Optical Detection of a Single Nuclear Spin
We propose a method to optically detect the spin state of a 31-P nucleus
embedded in a 28-Si matrix. The nuclear-electron hyperfine splitting of the
31-P neutral-donor ground state can be resolved via a direct frequency
discrimination measurement of the 31-P bound exciton photoluminescence using
single photon detectors. The measurement time is expected to be shorter than
the lifetime of the nuclear spin at 4 K and 10 T.Comment: 4 pages, 3 figure
Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED
The dynamics of the entanglement for coherent excitonic states in the system
of two coupled large semiconductor quantum dots () mediated by a
single-mode cavity field is investigated. Maximally entangled coherent
excitonic states can be generated by cavity field initially prepared in odd
coherent state. The entanglement of the excitonic coherent states between two
dots reaches maximum when no photon is detected in the cavity. The effects of
the zero-temperature environment on the entanglement of excitonic coherent
state are also studied using the concurrence for two subsystems of the excitonsComment: 7 pages, 6 figure
One-loop corrections to omega photoproduction near threshold
One-loop corrections to photoproduction near threshold have been
investigated by using the approximation that all relevant transition amplitudes
are calculated from the tree diagrams of effective Lagrangians. With the
parameters constrained by the data of , , and reactions, it is found that the one-loop effects
due to the intermediate and states can significantly change
the differential cross sections and spin observables. The results from this
exploratory investigation suggest strongly that the coupled-channel effects
should be taken into account in extracting reliable resonance parameters from
the data of vector meson photoproduction in the resonance region.Comment: 19 pages, REVTeX, 14 figures, title changed, revised version to
appear in Phys. Rev.
- …