80 research outputs found
Effects of sea level rise on economy of the United States
We report the first ex post study of the economic impact of sea level rise. We apply two econometric approaches to estimate the past effects of sea level rise on the economy of the USA, viz. Barro type growth regressions adjusted for spatial patterns and a matching estimator. Unit of analysis is 3063 counties of the USA. We fit growth regressions for 13 time periods and we estimated numerous varieties and robustness tests for both growth regressions and matching estimator. Although there is some evidence that sea level rise has a positive effect on economic growth, in most specifications the estimated effects are insignificant. We therefore conclude that there is no stable, significant effect of sea level rise on economic growth. This finding contradicts previous ex ante studies
Chemobiosis reveals tardigrade tun formation is dependent on reversible cysteine oxidation
Tardigrades, commonly known as âwaterbearsâ, are eight-legged microscopic invertebrates renowned for their ability to withstand extreme stressors, including high osmotic pressure, freezing temperatures, and complete desiccation. Limb retraction and substantial decreases to their internal water stores results in the tun state, greatly increasing their ability to survive. Emergence from the tun state and/or activity regain follows stress removal, where resumption of life cycle occurs as if stasis never occurred. However, the mechanism (s) through which tardigrades initiate tun formation is yet to be uncovered. Herein, we use chemobiosis to demonstrate that tardigrade tun formation is mediated by reactive oxygen species (ROS). We further reveal that tuns are dependent on reversible cysteine oxidation, and that this reversible cysteine oxidation is facilitated by the release of intracellular reactive oxygen species (ROS). We provide the first empirical evidence of chemobiosis and map the initiation and survival of tardigrades via osmobiosis, chemobiosis, and cryobiosis. In vivo electron paramagnetic spectrometry suggests an intracellular release of reactive oxygen species following stress induction; when this release is quenched through the application of exogenous antioxidants, the tardigrades can no longer survive osmotic stress. Together, this work suggests a conserved dependence of reversible cysteine oxidation across distinct tardigrade cryptobioses
A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments
We measured the inclusive electron-proton cross section in the nucleon
resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2
with the CLAS detector. The large acceptance of CLAS allowed for the first time
the measurement of the cross section in a large, contiguous two-dimensional
range of Q**2 and x, making it possible to perform an integration of the data
at fixed Q**2 over the whole significant x-interval. From these data we
extracted the structure function F2 and, by including other world data, we
studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate
higher twist contributions. The small statistical and systematic uncertainties
of the CLAS data allow a precise extraction of the higher twists and demand
significant improvements in theoretical predictions for a meaningful comparison
with new experimental results.Comment: revtex4 18 pp., 12 figure
Electron Scattering From High-Momentum Neutrons in Deuterium
We report results from an experiment measuring the semi-inclusive reaction
where the proton is moving at a large angle relative to the
momentum transfer. If we assume that the proton was a spectator to the reaction
taking place on the neutron in deuterium, the initial state of that neutron can
be inferred. This method, known as spectator tagging, can be used to study
electron scattering from high-momentum (off-shell) neutrons in deuterium. The
data were taken with a 5.765 GeV electron beam on a deuterium target in
Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section
was extracted for different values of final-state missing mass ,
backward proton momentum and momentum transfer . The data
are compared to a simple PWIA spectator model. A strong enhancement in the data
observed at transverse kinematics is not reproduced by the PWIA model. This
enhancement can likely be associated with the contribution of final state
interactions (FSI) that were not incorporated into the model. A ``bound neutron
structure function'' was extracted as a function of and
the scaling variable at extreme backward kinematics, where effects of
FSI appear to be smaller. For MeV/c, where the neutron is far
off-shell, the model overestimates the value of in the region of
between 0.25 and 0.6. A modification of the bound neutron structure
function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1
Referenc
Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV
The three-body photodisintegration of 3He has been measured with the CLAS
detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV
and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first
time to cover a wide momentum and angular range for the two outgoing protons.
Three kinematic regions dominated by either two- or three-body contributions
have been distinguished and analyzed. The measured cross sections have been
compared with results of a theoretical model, which, in certain kinematic
ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications:
removed 2 figures, improvements on others, a few minor modifications to the
tex
eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV
Differential cross sections for the reaction gamma p -> eta-prime p have been
measured with the CLAS spectrometer and a tagged photon beam with energies from
1.527 to 2.227 GeV. The results reported here possess much greater accuracy
than previous measurements. Analyses of these data indicate for the first time
the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710)
resonances, known to couple strongly to the eta N channel in photoproduction on
the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure
Measurement of the Deuteron Structure Function F2 in the Resonance Region and Evaluation of Its Moments
Inclusive electron scattering off the deuteron has been measured to extract
the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer
(CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement
covers the entire resonance region from the quasi-elastic peak up to the
invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum
transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous
measurements of the proton structure function F2 and cover a similar
two-dimensional region of Q2 and Bjorken variable x. Determination of the
deuteron F2 over a large x interval including the quasi-elastic peak as a
function of Q2, together with the other world data, permit a direct evaluation
of the structure function moments for the first time. By fitting the Q2
evolution of these moments with an OPE-based twist expansion we have obtained a
separation of the leading twist and higher twist terms. The observed Q2
behaviour of the higher twist contribution suggests a partial cancellation of
different higher twists entering into the expansion with opposite signs. This
cancellation, found also in the proton moments, is a manifestation of the
"duality" phenomenon in the F2 structure function
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
- âŠ