12 research outputs found

    Universal quantum interfaces

    Get PDF
    To observe or control a quantum system, one must interact with it via an interface. This letter exhibits simple universal quantum interfaces--quantum input/output ports consisting of a single two-state system or quantum bit that interacts with the system to be observed or controlled. It is shown that under very general conditions the ability to observe and control the quantum bit on its own implies the ability to observe and control the system itself. The interface can also be used as a quantum communication channel, and multiple quantum systems can be connected by interfaces to become an efficient universal quantum computer. Experimental realizations are proposed, and implications for controllability, observability, and quantum information processing are explored.Comment: 4 pages, 3 figures, RevTe

    Quantum control of 88^{88}Sr+^+ in a miniature linear Paul trap

    Full text link
    We report on the construction and characterization of an apparatus for quantum information experiments using 88^{88}Sr+^+ ions. A miniature linear radio-frequency (rf) Paul trap was designed and built. Trap frequencies above 1 MHz in all directions are obtained with 50 V on the trap end-caps and less than 1 W of rf power. We encode a quantum bit (qubit) in the two spin states of the S1/2S_{1/2} electronic ground-state of the ion. We constructed all the necessary laser sources for laser cooling and full coherent manipulation of the ions' external and internal states. Oscillating magnetic fields are used for coherent spin rotations. High-fidelity readout as well as a coherence time of 2.5 ms are demonstrated. Following resolved sideband cooling the average axial vibrational quanta of a single trapped ion is nˉ=0.05\bar n=0.05 and a heating rate of nˉ˙=0.016\dot{\bar n}=0.016 ms1^{-1} is measured.Comment: 8 pages,9 figure

    Single Atom Cooling by Superfluid Immersion: A Non-Destructive Method for Qubits

    Full text link
    We present a scheme to cool the motional state of neutral atoms confined in sites of an optical lattice by immersing the system in a superfluid. The motion of the atoms is damped by the generation of excitations in the superfluid, and under appropriate conditions the internal state of the atom remains unchanged. This scheme can thus be used to cool atoms used to encode a series of entangled qubits non-destructively. Within realisable parameter ranges, the rate of cooling to the ground state is found to be sufficiently large to be useful in experiments.Comment: 14 pages, 9 figures, RevTeX

    Sympathetic cooling of 9Be+^9Be^+ and 24Mg+^{24}Mg^+ for quantum logic

    Full text link
    We demonstrate the cooling of a two species ion crystal consisting of one 9Be+^9Be^+ and one 24Mg+^{24}Mg^+ ion. Since the respective cooling transitions of these two species are separated by more than 30 nm, laser manipulation of one ion has negligible effect on the other even when the ions are not individually addressed. As such this is a useful system for re-initializing the motional state in an ion trap quantum computer without affecting the qubit information. Additionally, we have found that the mass difference between ions enables a novel method for detecting and subsequently eliminating the effects of radio frequency (RF) micro-motion.Comment: Submitted to PR

    Synchrotron-sideband snake depolarizing resonances

    Full text link
    We recently created a snake depolarizing resonance using an rf solenoid magnet in a ring containing a nearly 100% Siberian snake. We found that the primary snake rf resonance also had two weaker synchrotron sidebands, which are second-order snake resonances; they were probably caused by the energy-dependent strength of the solenoid snake due to the Lorentz contraction of its longitudinal ∫ B⋅dl.∫B⋅dl. This was the first observation of an rf synchrotron-sideband depolarizing resonance in the presence of a nearly full Siberian snake. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87740/2/893_1.pd

    Global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2017, and forecasts to 2030, for 195 countries and territories: A systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017

    No full text
    Background Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980-2017 and forecast these estimates to 2030 for 195 countries and territories. Methods We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package - a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce agesex- specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections. Findings Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87-2·04) and has since decreased to 0·95 million deaths (0·91-1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79-3·67) and since then have gradually decreased to 1·94 million (1·63-2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8-39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets. Interpretation Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact. © 2019 The Author(s)
    corecore