47 research outputs found

    Efficient electron injection into plasma waves using higher-orderlaser modes

    Get PDF
    Using higher-order transverse laser modes as drivers forplasma wave excitation, and, in particular, using a ring laser beam withmaximum intensity off-axis, results in reversal of the focusinganddefocusing phase regions in a laser wakefield accelerator. Thisresults in improved performance of self-trapping and laser injectionschemes. Specifically, the trapping threshold required foropticalinjection is decreased and the maximum energy gain of the trappedelectrons is increased. This scheme could also be of interest for thegeneration of ring electron beams or for beam conditioning

    The Isgur-Wise function in a relativistic model for qQˉq\bar Q system

    Full text link
    We use the Dirac equation with a ``(asymptotically free) Coulomb + (Lorentz scalar) linear '' potential to estimate the light quark wavefunction for qQˉ q\bar Q mesons in the limit mQ→∞m_Q\to \infty. We use these wavefunctions to calculate the Isgur-Wise function ξ(v.v′)\xi (v.v^\prime ) for orbital and radial ground states in the phenomenologically interesting range 1≤v.v′≤41\leq v.v^ \prime \leq 4. We find a simple expression for the zero-recoil slope, ξ′(1)=−1/2−ϵ2/3\xi^ \prime (1) =-1/2- \epsilon^2 /3, where ϵ\epsilon is the energy eigenvalue of the light quark, which can be identified with the Λˉ\bar\Lambda parameter of the Heavy Quark Effective Theory. This result implies an upper bound of −1/2-1/2 for the slope ξ′(1)\xi^\prime (1). Also, because for a very light quark q(q=u,d)q (q=u, d) the size \sqrt {} of the meson is determined mainly by the ``confining'' term in the potential (γ∘σr)(\gamma_\circ \sigma r), the shape of ξu,d(v.v′)\xi_{u,d}(v.v^\prime ) is seen to be mostly sensitive to the dimensionless ratio Λˉu,d2/σ\bar \Lambda_{u,d}^2/\sigma. We present results for the ranges of parameters 150MeV<Λˉu,d<600MeV150 MeV <\bar \Lambda_{u,d} <600 MeV (Λˉs≈Λˉu,d+100MeV)(\bar\Lambda_s \approx \bar\Lambda_{u,d}+100 MeV), 0.14GeV2≤σ≤0.25GeV20.14 {GeV}^2 \leq \sigma \leq 0.25 {GeV}^2 and light quark masses mu,md≈0,ms=175MeVm_u, m_d \approx 0, m_s=175 MeV and compare to existing experimental data and other theoretical estimates. Fits to the data give: Λˉu,d2/σ=4.8±1.7{\bar\Lambda_{u,d}}^2/\sigma =4.8\pm 1.7 , −ξu,d′(1)=2.4±0.7-\xi^\prime_{u,d}(1)=2.4\pm 0.7 and ∣Vcb∣τB1.48ps=0.050±0.008\vert V_{cb} \vert \sqrt {\frac {\tau_B}{1.48 ps}}=0.050\pm 0.008 [ARGUS '93]; Λˉu,d2/σ=3.4±1.8{\bar\Lambda_{u,d}}^2/\sigma = 3.4\pm 1.8, −ξu,d′(1)=1.8±0.7-\xi^\prime_{u,d}(1)=1.8\pm 0.7 and ∣Vcb∣τB1.48ps=0.043±0.008\vert V_{cb} \vert \sqrt { \frac {\tau_B}{1.48 ps}}=0.043\pm 0.008 [CLEO '93]; ${\bar\Lambda_{u,d}}^2/Comment: 22 pages, Latex, 4 figures (not included) available by fax or via email upon reques

    Nonlinear laser energy depletion in laser-plasma accelerators

    No full text
    Energy depletion of intense, short-pulse lasers via excitation of plasma waves is investigated numerically and analytically. The evolution of a resonant laser pulse proceeds in two phases. In the first phase, the pulse steepens, compresses, and frequency red-shifts as energy is deposited in the plasma. The second phase of evolution occurs after the pulse reaches a minimum length at which point the pulse rapidly lengthens, losing resonance with the plasma. Expressions for the rate of laser energy loss and rate of laser red-shifting are derived and are found to be in excellent agreement with the direct numerical solution of the laser field evolution coupled to the plasma response. Both processes are shown to have the same characteristic length-scale. In the high intensity limit, for nearly-resonant Gaussian laser pulses, this scale length is shown to be independent of laser intensity

    Physical Fidelity in Particle-In-Cell Modeling of Small Debye-Length Plasmas

    No full text
    The connection between macro-particle shape functions and non-physical phase-space "heating" in the particle-in-cell (PIC) algorithm is examined. The development of fine-scale phasespace structures starting from a cold initial condition is shown to be related to spatial correlations in the interpolated fields used in the Lorentz force. It is shown that the plasma evolution via the PIC algorithm from a cold initial condition leads to a state that is not consistent with that of a thermal plasma
    corecore