143 research outputs found

    Suspended particulate matter dynamics in coastal waters from ocean color: Application to the northern Gulf of Mexico

    Get PDF
    Suspended particulate matter (SPM) plays an important role in primary production, pollutant transport, and other biogeochemical processes in coastal marine environments. We present an empirical two-band ocean color remote sensing reflectance algorithm (Rrs670/ Rrs555) for SPM concentrations developed using field measurements obtained in coastal waters influenced by the Mississippi River in 2000, 2002, and 2004. The ratio algorithm was also found to be highly correlated to backscattering coefficient (bbp(555), r2 = 0.96), the backscattering ratio (bbp(555) /bp(555), r2 = 0.82) and the spectral backscattering slope (γ, r2 = 0.72) in March 2002, a period with large hydrographic variability in the study area. Strong correlations between water column bbp(555), SPM and nonalgal absorption anap(443) suggest the dominant influence of nonalgal particles on bbp. Sea WiFS derived SPM and γ distributions indicated event-based variability linked to energetic disturbances such as frontal passages, resuspension, and river discharge that with bbp/bp could reveal refractive index and particle size characteristics in the coastal environment

    Direct connectivity between upstream and downstream promotes rapid response of lower coastal-plain rivers to land-use change

    Get PDF
    Low-relief fluvial systems that originate in the lower coastal plain and discharge into estuaries are common along passive margins. These watersheds are thought to be disconnected from their termini by floodplains, which buffer the sediment-routing system by sequestration. Here, we present a detailed study of the Newport River, a typical lower coastal-plain system, which reveals high connectivity between watershed and delta. Connectivity is measured as the time lag between initiation of a silviculture operation, which increased landscape erosion, and when the sediment appeared at the bay-head delta. The time lag, measured from aerial photographs and sedimentation rates calculated from 210Pb- and 137Cs-activities in cores from the watershed and delta, is <3 years. Most lower coastal-plain rivers are steeper and have less floodplain accommodation available for storage than their larger counterparts that originate landward of the fall line, which promotes higher connectivity between upstream and downstream

    Carbon burial on river-dominated continental shelves: Impact of historical changes in sediment loading adjacent to the Mississippi River

    Get PDF
    Seabed cores collected on the continental shelf adjacent to the Mississippi River show a direct temporal correlation between decreases in mass accumulation rate (factor of 2-3) and suspended sediment loads in the river. This mid 20th century decline is not apparent shelf-wide due to sediment focusing and biological seabed mixing. Total organic carbon diagenetic loss rate across this sediment age interval is relatively uninterrupted when coffected for the non-steady state mass flux. This suggests that organic carbon burial rates in oxic bottom water settings on river-dominated continental margins are directly proportional to lithogenic flux. Variations in OM remineralization rates due to changes in the composition (marine vs. terrestrial) of the particulate OM flux at the sediment surface are a second-order effect that cannot be distinguished in the bulk carbon sediment record at these oxic sites; although they may significantly alter the OM degradation-induced CO2 flux to the overlying water column

    Seagrass Restoration Enhances "Blue Carbon" Sequestration in Coastal Waters

    Get PDF
    Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as "blue carbon," accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha) in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zostera marina, restoration in carbon storage in sediments of shallow coastal ecosystems. Sediments of replicate seagrass meadows representing different age treatments (as time since seeding: 0, 4, and 10 years), were analyzed for % carbon, % nitrogen, bulk density, organic matter content, and 210Pb for dating at 1-cm increments to a depth of 10 cm. Sediment nutrient and organic content, and carbon accumulation rates were higher in 10-year seagrass meadows relative to 4-year and bare sediment. These differences were consistent with higher shoot density in the older meadow. Carbon accumulation rates determined for the 10-year restored seagrass meadows were 36.68 g C m-2 yr-1. Within 12 years of seeding, the restored seagrass meadows are expected to accumulate carbon at a rate that is comparable to measured ranges in natural seagrass meadows. This the first study to provide evidence of the potential of seagrass habitat restoration to enhance carbon sequestration in the coastal zone

    An evaluation of submarine groundwater discharge along the continental shelf of Louisiana using a multiple tracer approach

    Get PDF
    Natural geochemical tracers (222Rn, 3H, 3He, and 4He) were used to assess submarine groundwater discharge (SGD) along the continental shelf west of the Mississippi River. In order to assess SGD, groundwater, surface water, and sediment samples were collected on land and during six 4-day cruises aboard the R/V Pelican between Match 2003 and May 2004. A box model approach was used to quantify sources and sinks of 222Rn in the study area and to calculate SGD rates. SGD estimates were we based on two end member values for the potential advecting fluids: (1) that supported by 226Ra in the sediments; and (2) groundwater activities measured in monitoring wells. Calculated 222Rn SGD rates based on sediment supported activities ranged from 0.04 to 0.14 cm d-1, and estimates based on monitoring well activities ranged from 0.01 to 0.07 cm d-1 and corresponds to 1.41 km3 yr-1 of discharged water over our study area, equivalent to <1% of the Mississippi River during the same time frame. 3He and 4He, longer-lived tracers, exhibited significantly greater anomalies in the eastern portion of the study area which corresponds with greater oil and gas extraction and the release of formation water into the water column in this region. While the total SGD was relatively minor, potential sources of SGD are many and we suggest formation water associated with oil and gas extraction, geothermal convection, and seawater recirculation are the primary sources with a minimal contribution from terrestrially derived topography driven flow

    Tracing the sources, fate, and recycling of fine sediments across a river-delta interface

    Get PDF
    Deltaic floodplains are thought to be long-term depositional environments, however there remains a limited understanding regarding timescales of depositional and erosional events, sediment delivery pathways and sediment storage. This study uses sediment concentration and sediment fingerprinting to examine the contribution of surface and subsurface sources to suspended sediment transiting the Lower Roanoke River, North Carolina, United States. The Lower Roanoke is disconnected from its high-gradient uplands in the Piedmont and Appalachian Mountains by a series of dams, which effectively restricts suspended sediment delivery from the headwaters. Accordingly, sediments from the Lower Roanoke River basin are the primary source of suspended sediment downstream of the dams. The fingerprinting method utilized fallout radionuclide tracers (210Pbxs and 137Cs) to examine the spatial variation of sediment-source contributions to suspended-sediment samples (n = 79). Three end-member sources were sampled: 1. surface sources (floodplains and topsoils; n = 60), 2. subsurface sources (channel bed and banks; n = 66), and 3. deltaic sources (delta front and prodelta; n = 11). The results demonstrate that with decreasing river slope and increasing influence of estuarine-driven flow dynamics, the relative contribution of surface sediments to the suspended-sediment load increases from 20% (± 2%) in the upper reach, to 67% (± 1%) in the Roanoke bayhead delta (BHD). At the river mouth, the surface-sediment contribution decreases, and the delta front and prodelta sediments contribute 74% (± 1%) to the suspended load. These results indicate, that during the delta transgression, erosion of the lower delta provides an additional source of sediment to the upper delta. At the same time, the lower deltaic plain, considered a sediment sink and long-term sediment-storage site, becomes erosional. The lower river and distributary network of the delta plain, which were thought to only disperse sediments in a seaward direction, may also have an important landward-directed sediment-dispersal component that provides nourishment and fortification to the upper BHD, at the cost of the eroding lower delta. Recognition of these contrasting sediment pathways in the Roanoke River highlights that these complex bidirectional processes may exist in other eroding deltas. Understanding these bidirectional processes will be necessary for the ongoing management of deltaic environments under increasing anthropogenic stress such as land use change and accelerating sea-level rise

    Coastal sedimentation across North America doubled in the 20th century despite river dams

    Get PDF
    The proliferation of dams since 1950 promoted sediment deposition in reservoirs, which is thought to be starving the coast of sediment and decreasing the resilience of communities to storms and sea-level rise. Diminished river loads measured upstream from the coast, however, should not be assumed to propagate seaward. Here, we show that century-long records of sediment mass accumulation rates (g cm−2 yr−1) and sediment accumulation rates (cm yr−1) more than doubled after 1950 in coastal depocenters around North America. Sediment sources downstream of dams compensate for the river-sediment lost to impoundments. Sediment is accumulating in coastal depocenters at a rate that matches or exceeds relative sea-level rise, apart from rapidly subsiding Texas and Louisiana where water depths are increasing and intertidal areas are disappearing. Assuming no feedbacks, accelerating global sea-level rise will eventually surpass current sediment accumulation rates, underscoring the need for including coastal-sediment management in habitat-restoration projects

    Non-seagrass carbon contributions to seagrass sediment blue carbon

    Get PDF
    Non-seagrass sources account for ∼ 50% of the sediment organic carbon (SOC) in many seagrass beds, a fraction that may derive from external organic matter (OM) advected into the meadow and trapped by the seagrass canopy or produced in situ. If allochthonous carbon fluxes are responsible for the non-seagrass SOC in a given seagrass bed, this fraction should decrease with distance from the meadow perimeter. Identifying the spatial origin of SOC is important for closing seagrass carbon budgets and “blue carbon” offset-credit accounting, but studies have yet to quantify and map seagrass SOC stocks by carbon source. We measured sediment δ13C, δ15N, and δ34S throughout a large (6 km2), restored Zostera marina (eelgrass) meadow and applied Bayesian mixing models to quantify total SOC contributions from possible autotroph sources, Z. marina, Spartina alterniflora, and benthic microalgae (BMA). Z. marina accounted for &lt; 40% of total meadow SOC, but we did not find evidence for outwelling from the fringing S. alterniflora salt-marsh or OM advection from bare subtidal areas. S. alterniflora SOC contributions averaged 10% at sites both inside and outside of the meadow. The BMA fraction accounted for 51% of total meadow SOC and was highest at sites furthest from the bare subtidal-meadow edge, indicative of in situ production. 210Pb profiles confirmed that meadow-enhanced sedimentation facilitates the burial of in situ BMA. Deducting this contribution from total SOC would underestimate total organic carbon fixation within the meadow. Seagrass meadows can enhance BMA burial, which likely accounts for most of the non-seagrass SOC stored in many seagrass beds

    Anthropogenic impacts on tidal creek sedimentation since 1900

    Get PDF
    Land cover and use around the margins of estuaries has shifted since 1950 at many sites in North America due to development pressures from higher population densities. Small coastal watersheds are ubiquitous along estuarine margins and most of this coastal land-cover change occurred in these tidal creek watersheds. A change in land cover could modify the contribution of sediments from tidal creek watersheds to downstream areas and affect estuarine habitats that rely on sediments to persist or are adversely impacted by sediment loading. The resilience of wetlands to accelerating relative sea-level rise depends, in part, on the supply of lithogenic sediment to support accretion and maintain elevation; however, subtidal habitats such as oyster reefs and seagrass beds are stressed under conditions of high turbidity and sedimentation. Here we compare sediment accumulation rates before and after 1950 using 210Pb in 12 tidal creeks across two distinct regions in North Carolina, one region of low relief tidal-creek watersheds where land cover change since 1959 was dominated by fluctuations in forest, silviculture, and agriculture, and another region of relatively high relief tidal-creek watersheds where land-use change was dominated by increasing suburban development. At eight of the creeks, mass accumulation rates (g cm-2 y-1) measured at the outlet of the creeks increased contemporaneously with the largest shift in land cover, within the resolution of the land-cover data set (~5-years). All but two creek sites experienced a doubling or more in sediment accumulation rates (cm yr-1) after 1950 and most sites experienced sediment accumulation rates that exceeded the rate of local relative sea-level rise, suggesting that there is an excess of sediment being delivered to these tidal creeks and that they may slowly be infilling. After 1950, land cover within one creek watershed changed little, as did mass accumulation rates at the coring location, and another creek coring site did not record an increase in mass accumulation rates at the creek outlet despite a massive increase in development in the watershed that included the construction of retention ponds. These abundant tidal-creek watersheds have little relief, area, and flow, but they are impacted by changes in land cover more, in terms of percent area, than their larger riverine counterparts, and down-stream areas are highly connected to their associated watersheds. This work expands the scientific understanding of connectivity between lower coastal plain watersheds and estuaries and provides important information for coastal zone managers seeking to balance development pressures and environmental protections
    corecore