102 research outputs found

    Nonlocal effects in the shot noise of diffusive superconductor - normal-metal systems

    Full text link
    A cross-shaped diffusive system with two superconducting and two normal electrodes is considered. A voltage eV<ΔeV < \Delta is applied between the normal leads. Even in the absence of average current through the superconducting electrodes their presence increases the shot noise at the normal electrodes and doubles it in the case of a strong coupling to the superconductors. The nonequilibrium noise at the superconducting electrodes remains finite even in the case of a vanishingly small transport current due to the absence of energy transfer into the superconductors. This noise is suppressed by electron-electron scattering at sufficiently high voltages.Comment: 4 pages, RevTeX, 2 eps figure

    About the measurements of the hard X-ray background

    Full text link
    We analyze uncertainties in the cosmic X-ray background measurements performed by the INTEGRAL observatory. We find that the most important effect limiting the accuracy of the measurements is related to the intrinsic background variation in detectors. Taking into account all of the uncertainties arising during the measurements we conclude that the X-ray background intensity obtained in the INTEGRAL observations is compatible with the historic X-ray background observations performed by the HEAO-1 satellite.Comment: 20 pages, 4 figures, accepted for publication in Astrophysics and Space Scienc

    Long Distance Contribution to sdγs \to d\gamma and Implications for ΩΞγ,BsBdγ\Omega^-\to \Xi ^-\gamma, B_s \to B_d^*\gamma and bsγb \to s\gamma

    Full text link
    We estimate the long distance (LD) contribution to the magnetic part of the sdγs \to d\gamma transition using the Vector Meson Dominance approximation (V=ρ,ω,ψi)(V=\rho,\omega,\psi_i). We find that this contribution may be significantly larger than the short distance (SD) contribution to sdγs \to d\gamma and could possibly saturate the present experimental upper bound on the ΩΞγ\Omega^-\to \Xi^-\gamma decay rate, ΓΩΞγMAX3.7×109\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} \simeq 3.7\times10^{-9}eV. For the decay BsBdγB_s \to B^*_d\gamma, which is driven by sdγs \to d\gamma as well, we obtain an upper bound on the branching ratio BR(BsBdγ)<3×108BR(B_s \to B_d^*\gamma)<3\times10^{-8} from ΓΩΞγMAX\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma}. Barring the possibility that the Quantum Chromodynamics coefficient a2(ms)a_2(m_s) be much smaller than 1, ΓΩΞγMAX\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} also implies the approximate relation 23igψi2(0)mψi212gρ2(0)mρ2+16gω2(0)mω2\frac{2}{3} \sum_i \frac{g^2_{\psi_i}(0)}{m^2_{\psi_i}} \simeq \frac{1}{2} \frac{g^2_\rho(0)}{m^2_\rho} + \frac{1}{6}\frac{g^2_\omega(0)}{m^2_\omega}. This relation agrees quantitatively with a recent independent estimate of the l.h.s. by Deshpande et al., confirming that the LD contributions to bsγb \to s\gamma are small. We find that these amount to an increase of (4±2)%(4\pm2)\% in the magnitude of the bsγb \to s \gamma transition amplitude, relative to the SD contribution alone.Comment: 16 pages, LaTeX fil

    Single-Brane Cosmological Solutions with a Stable Compact Extra Dimension

    Get PDF
    We consider 5-dimensional cosmological solutions of a single brane. The correct cosmology on the brane, i.e., governed by the standard 4-dimensional Friedmann equation, and stable compactification of the extra dimension is guaranteed by the existence of a non-vanishing \hat{T}^5_5 which is proportional to the 4-dimensional trace of the energy-momentum tensor. We show that this component of the energy-momentum tensor arises from the backreaction of the dilaton coupling to the brane. The same positive features are exhibited in solutions found in the presence of non-vanishing cosmological constants both on the brane (\Lambda_{br}) and in the bulk (\Lambda_B). Moreover, the restoration of the Friedmann equation, with the correct sign, takes place for both signs of ΛB\Lambda_B so long as the sign of Λbr\Lambda_{br} is opposite ΛB\Lambda_B in order to cancel the energy densities of the two cosmological constants. We further extend our single-brane thin-wall solution to allow a brane with finite thickness.Comment: 25 pages, Latex file, no figures, comments added, references updated, final version to appear in Physical Review

    Ballistic electron motion in a random magnetic field

    Full text link
    Using a new scheme of the derivation of the non-linear σ\sigma-model we consider the electron motion in a random magnetic field (RMF) in two dimensions. The derivation is based on writing quasiclassical equations and representing their solutions in terms of a functional integral over supermatrices QQ with the constraint Q2=1Q^2=1. Contrary to the standard scheme, neither singling out slow modes nor saddle-point approximation are used. The σ\sigma-model obtained is applicable at the length scale down to the electron wavelength. We show that this model differs from the model with a random potential (RP).However, after averaging over fluctuations in the Lyapunov region the standard σ\sigma-model is obtained leading to the conventional localization behavior.Comment: 10 pages, no figures, to be submitted in PRB v2: Section IV is remove

    Current noise in long diffusive SNS junctions in the incoherent MAR regime

    Full text link
    Spectral density of current fluctuations at zero frequency is calculated for a long diffusive SNS junction with low-resistive interfaces. At low temperature, T << Delta, the subgap shot noise approaches linear voltage dependence, S=(2/ 3R)(eV + 2Delta), which is the sum of the shot noise of the normal conductor and voltage independent excess noise. This result can also be interpreted as the 1/3-suppressed Poisson noise for the effective charge q = e(1+2Delta/eV) transferred by incoherent multiple Andreev reflections (MAR). At higher temperatures, anomalies of the current noise develop at the gap subharmonics, eV = 2Delta/n. The crossover to the hot electron regime from the MAR regime is analyzed in the limit of small applied voltages.Comment: improved version, to be published in Phys. Rev.

    The acceleration of the universe and the physics behind it

    Full text link
    Using a general classification of dark enegy models in four classes, we discuss the complementarity of cosmological observations to tackle down the physics beyond the acceleration of our universe. We discuss the tests distinguishing the four classes and then focus on the dynamics of the perturbations in the Newtonian regime. We also exhibit explicitely models that have identical predictions for a subset of observations.Comment: 18 pages, 18 figure

    Signatures of Classical Diffusion in Quantum Fluctuations of 2D Chaotic Systems

    Full text link
    We consider a two-dimensional (2D) generalization of the standard kicked-rotor (KR) and show that it is an excellent model for the study of 2D quantum systems with underlying diffusive classical dynamics. First we analyze the distribution of wavefunction intensities and compare them with the predictions derived in the framework of diffusive {\it disordered} samples. Next, we turn the closed system into an open one by constructing a scattering matrix. The distribution of the resonance widths P(Γ){\cal P}(\Gamma) and Wigner delay times P(τW){\cal P}(\tau_W) are investigated. The forms of these distributions are obtained for different symmetry classes and the traces of classical diffusive dynamics are identified. Our theoretical arguments are supported by extensive numerical calculations.Comment: 20 pages; 12 figure

    Electromagnetic Strings: Complementarity between Time and Temperature

    Full text link
    We investigate some of the intricate features in a gravity decoupling limit of a open bosonic string theory, in a constant electromagnetic (EM-) field. We explain the subtle nature of space-time at short distances, due to its entanglement with the gauge field windings in the theory. Incorporating the mass-shell condition in the theory, we show that the time coordinate is small, of the order of EM-string scale, and the space coordinates are large. We perform a careful analysis in the critical regime to describe the decoupling of a series of gauge-string windings in successions, just below the Hagedorn temperature. We argue for the condensation of gauge-string at the Hagedorn temperature, which is followed by the decoupling of tachyonic particles. We demonstrate the phenomena by revoking the effective noncommutative dynamics for the D(3)-brane and obtain nonlinear corrections to U(1) gauge theory. We discuss the spontaneous breaking of noncommutative U(1) symmetry and show that the Hagedorn phase is described by the noninteracting gauge particles. The notion of time reappears in the phase at the expense of temperature. It suggests a complementarity between two distinct notions, time and temperature, at short distances.Comment: 32 pages, 2 figures, renamed title, added clarification on winding modes, corrected typos, added reference
    corecore