28,780 research outputs found

    Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau

    Get PDF
    Little is known about decadal- to centennial-scale climate variability and its associated forcing mechanisms on the Qinghai-Tibetan Plateau. A decadal-resolution record of total organic carbon (TOC) and grainsize retrieved from a composite piston core from Kusai Lake, NW China, provides solid evidence for decadal- to centennial-scale Asian monsoon variability for the Northern Qinghai-Tibetan Plateau during the last 3770 yr. Intensified winter and summer monsoons are well correlated with respective reductions and increases in solar irradiance. A number of intensified Asian winter monsoon phases are potentially correlated with North Atlantic climatic variations including Bond events 0 to 2 and more recent subtle climate changes from the Medieval Warm Period to the Little Ice Age. Our findings indicate that Asian monsoon changes during the late Holocene are forced by changes in both solar output and oceanic-atmospheric circulation patterns. Our results demonstrate that these forcing mechanisms operate not only in low latitudes but also in mid-latitude regions (the Northern Qinghai-Tibetan Plateau)

    Generation of high-energy monoenergetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses

    Full text link
    A novel radiation pressure acceleration (RPA) regime of heavy ion beams from laser-irradiated ultrathin foils is proposed by self-consistently taking into account the ionization dynamics. In this regime, the laser intensity is required to match with the large ionization energy gap when the successive ionization of high-Z atoms passing the noble gas configurations [such as removing an electron from the helium-like charge state (Z−2)+(\text{Z}-2)^+ to (Z−1)+(\text{Z}-1)^+]. While the target ions in the laser wing region are ionized to low charge states and undergo rapid dispersions due to instabilities, a self-organized, stable RPA of highly-charged heavy ion beam near the laser axis is achieved. It is also found that a large supplement of electrons produced from ionization helps preserving stable acceleration. Two-dimensional particle-in-cell simulations show that a monoenergetic Al13+\text{Al}^{13+} beam with peak energy 1 GeV1\ \text{GeV} and energy spread of 5%5\% is obtained by lasers at intensity 7×1020 W/cm27\times10^{20}\ \text{W}/\text{cm}^2.Comment: 5 pages, 4 figure

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    Mesoscopic Kondo effect of a quantum dot embedded in an Aharonov-Bohm ring with intradot spin-flip scattering

    Full text link
    We study the Kondo effect in a quantum dot embedded in a mesoscopic ring taking into account intradot spin-flip scattering RR. Based on the finite-UU slave-boson mean-field approach, we find that the Kondo peak in the density of states is split into two peaks by this coherent spin-flip transition, which is responsible for some interesting features of the Kondo-assisted persistent current circulating the ring: (1) strong suppression and crossover to a sine function form with increasing RR; (2) appearance of a "hump" in the RR-dependent behavior for odd parity. RR-induced reverse of the persistent current direction is also observed for odd parity.Comment: 7 pages,6 figures, to be published by Europhys. Let

    Interpretable neural architecture search via Bayesian optimisation with Weisfeiler-Lehman kernels

    Get PDF
    Current neural architecture search (NAS) strategies focus only on finding a single, good, architecture. They offer little insight into why a specific network is performing well, or how we should modify the architecture if we want further improvements. We propose a Bayesian optimisation (BO) approach for NAS that combines the Weisfeiler-Lehman graph kernel with a Gaussian process surrogate. Our method optimises the architecture in a highly data-efficient manner: it is capable of capturing the topological structures of the architectures and is scalable to large graphs, thus making the high-dimensional and graph-like search spaces amenable to BO. More importantly, our method affords interpretability by discovering useful network features and their corresponding impact on the network performance. Indeed, we demonstrate empirically that our surrogate model is capable of identifying useful motifs which can guide the generation of new architectures. We finally show that our method outperforms existing NAS approaches to achieve the state of the art on both closed- and open-domain search spaces

    Pion Decay Constant, ZAZ_A and Chiral Log from Overlap Fermions

    Get PDF
    We report our calculation of the pion decay constant fπf_\pi, the axial renormalization constant ZAZ_A, and the quenched chiral logarithms from the overlap fermions. The calculation is done on a quenched 20420^4 lattice at a=0.148a=0.148 fm using tree level tadpole improved gauge action. The smallest pion mass we reach is about 280 MeV. The lattice size is about 4 times the Compton wavelength of the lowest mass pion.Comment: Lattice2001(Hadronic Matrix Elements), 3pages, 5figure

    On the impulsive synchronization control for a class of chaotic systems

    Get PDF
    The problem on chaos synchronization for a class of chaotic system is addressed. Based on impulsive control theory and by constructing a novel Lyapunov functional, new impulsive synchronization strategies are presented and possess more practical application value. Finally some typical numerical simulation examples are included to demonstrate the effectiveness of the theoretical results
    • …
    corecore