21,039 research outputs found
Stabilizing the forming process in unipolar resistance switching using an improved compliance current limiter
The high reset current IR in unipolar resistance switching now poses major
obstacles to practical applications in memory devices. In particular, the first
IR-value after the forming process is so high that the capacitors sometimes do
not exhibit reliable unipolar resistance switching. We found that the
compliance current Icomp is a critical parameter for reducing IR-values. We
therefore introduced an improved, simple, easy to use Icomp-limiter that
stabilizes the forming process by drastically decreasing current overflow, in
order to precisely control the Icomp- and subsequent IR-values.Comment: 15 pages, 4 figure
Optical Response of Solid CO as a Tool for the Determination of the High Pressure Phase
We report first-principles calculations of the frequency dependent linear and
second-order optical properties of the two probable extended-solid phases of
CO--V, i.e. and . Compared to the parent
phase the linear optical susceptibility of both phases is much smaller. We find
that and differ substantially in their linear optical
response in the higher energy regime. The nonlinear optical responses of the
two possible crystal structures differ by roughly a factor of five. Since the
differences in the nonlinear optical spectra are pronounced in the low energy
regime, i.e. below the band gap of diamond, measurements with the sample inside
the diamond anvil cell are feasible. We therefore suggest optical experiments
in comparison with our calculated data as a tool for the unambiguous
identification of the high pressure phase of CO.Comment: 4 pages 2 fig
HIL: designing an exokernel for the data center
We propose a new Exokernel-like layer to allow mutually untrusting physically deployed services to efficiently share the resources of a data center. We believe that such a layer offers not only efficiency gains, but may also enable new economic models, new applications, and new security-sensitive uses. A prototype (currently in active use) demonstrates that the proposed layer is viable, and can support a variety of existing provisioning tools and use cases.Partial support for this work was provided by the MassTech Collaborative Research Matching Grant Program, National Science Foundation awards 1347525 and 1149232 as well as the several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or
Erlang Code Evolution Control
During the software lifecycle, a program can evolve several times for
different reasons such as the optimisation of a bottle-neck, the refactoring of
an obscure function, etc. These code changes often involve several functions or
modules, so it can be difficult to know whether the correct behaviour of the
previous releases has been preserved in the new release. Most developers rely
on a previously defined test suite to check this behaviour preservation. We
propose here an alternative approach to automatically obtain a test suite that
specifically focusses on comparing the old and new versions of the code. Our
test case generation is directed by a sophisticated combination of several
already existing tools such as TypEr, CutEr, and PropEr; and other ideas such
as allowing the programmer to chose an expression of interest that must
preserve the behaviour, or the recording of the sequences of values to which
this expression is evaluated. All the presented work has been implemented in an
open-source tool that is publicly available on GitHub.Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
Sparse Optical Arbitrary Waveform Measurement by Compressive Sensing
We propose and experimentally demonstrate a compressive sensing scheme based on optical coherent receiver that recovers sparse optical arbitrary signals with an analog bandwidth up to 25GHz. The proposed scheme uses 16x lower sampling rate than the Nyquist theorem and spectral resolution of 24.4MHz
Evaluating CAVM: A New Search-Based Test Data Generation Tool for C
We present CAVM (pronounced “ka-boom”), a new search-based test data generation tool for C. CAVM is developed to augment an existing commercial tool, CodeScroll, which uses static analysis and input partitioning to generate test data. Unlike the current state-of-the-art search-based test data generation tool for C, Austin, CAVM handles dynamic data structures using purely search-based techniques. We compare CAVM against CodeScroll and Austin using 49 C functions, ranging from small anti-pattern case studies to real world open source code and commercial code. The results show that CAVM can cover branches that neither CodeScroll nor Austin can, while also exclusively achieving the highest branch coverage for 20 of the studied functions
- …