855 research outputs found
A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars
General relativistic superfluid neutron stars have a significantly more
intricate dynamics than their ordinary fluid counterparts. Superfluidity allows
different superfluid (and superconducting) species of particles to have
independent fluid flows, a consequence of which is that the fluid equations of
motion contain as many fluid element velocities as superfluid species. Whenever
the particles of one superfluid interact with those of another, the momentum of
each superfluid will be a linear combination of both superfluid velocities.
This leads to the so-called entrainment effect whereby the motion of one
superfluid will induce a momentum in the other superfluid. We have constructed
a fully relativistic model for entrainment between superfluid neutrons and
superconducting protons using a relativistic mean field model
for the nucleons and their interactions. In this context there are two notions
of ``relativistic'': relativistic motion of the individual nucleons with
respect to a local region of the star (i.e. a fluid element containing, say, an
Avogadro's number of particles), and the motion of fluid elements with respect
to the rest of the star. While it is the case that the fluid elements will
typically maintain average speeds at a fraction of that of light, the
supranuclear densities in the core of a neutron star can make the nucleons
themselves have quite high average speeds within each fluid element. The
formalism is applied to the problem of slowly-rotating superfluid neutron star
configurations, a distinguishing characteristic being that the neutrons can
rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR
Critical Enhancement of the In-medium Nucleon-Nucleon Cross Section at low Temperatures
The in-medium nucleon-nucleon cross section is calculated starting from the
thermodynamic T-matrix at finite temperatures. The corresponding
Bethe-Salpeter-equation is solved using a separable representation of the Paris
nucleon-nucleon-potential. The energy-dependent in-medium N-N cross section at
a given density shows a strong temperature dependence. Especially at low
temperatures and low total momenta, the in-medium cross section is strongly
modified by in-medium effects. In particular, with decreasing temperature an
enhancement near the Fermi energy is observed. This enhancement can be
discussed as a precursor of the superfluid phase transition in nuclear matter.Comment: 10 pages with 4 figures (available on request from the authors),
MPG-VT-UR 34/94 accepted for publication in Phys. Rev.
On local linearization of control systems
We consider the problem of topological linearization of smooth (C infinity or
real analytic) control systems, i.e. of their local equivalence to a linear
controllable system via point-wise transformations on the state and the control
(static feedback transformations) that are topological but not necessarily
differentiable. We prove that local topological linearization implies local
smooth linearization, at generic points. At arbitrary points, it implies local
conjugation to a linear system via a homeomorphism that induces a smooth
diffeomorphism on the state variables, and, except at "strongly" singular
points, this homeomorphism can be chosen to be a smooth mapping (the inverse
map needs not be smooth). Deciding whether the same is true at "strongly"
singular points is tantamount to solve an intriguing open question in
differential topology
A parametric model for the changes in the complex valued conductivity of a lung during tidal breathing
Classical homogenization theory based on the Hashin-Shtrikman coated ellipsoids is used to model the changes in the complex valued conductivity (or admittivity) of a lung during tidal breathing. Here, the lung is modeled as a two-phase composite material where the alveolar air-filling corresponds to the inclusion phase. The theory predicts a linear relationship between the real and the imaginary parts of the change in the complex valued conductivity of a lung during tidal breathing, and where the loss cotangent of the change is approximately the same as of the effective background conductivity and hence easy to estimate. The theory is illustrated with numerical examples, as well as by using reconstructed Electrical Impedance Tomography (EIT) images based on clinical data from an ongoing study within the EU-funded CRADL project. The theory may be potentially useful for improving the imaging algorithms and clinical evaluations in connection with lung EIT for respiratory management and monitoring in neonatal intensive care units
How was it for you? Experiences of participatory design in the UK health service
Improving co-design methods implies that we need to understand those methods, paying attention to not only the effect of method choices on design outcomes, but also how methods affect the people involved in co-design. In this article, we explore participants' experiences from a year-long participatory health service design project to develop ‘Better Outpatient Services for Older People’. The project followed a defined method called experience-based design (EBD), which represented the state of the art in participatory service design within the UK National Health Service. A sample of participants in the project took part in semi-structured interviews reflecting on their involvement in and their feelings about the project. Our findings suggest that the EBD method that we employed was successful in establishing positive working relationships among the different groups of stakeholders (staff, patients, carers, advocates and design researchers), although conflicts remained throughout the project. Participants' experiences highlighted issues of wider relevance in such participatory design: cost versus benefit, sense of project momentum, locus of control, and assumptions about how change takes place in a complex environment. We propose tactics for dealing with these issues that inform the future development of techniques in user-centred healthcare design
Termination Casts: A Flexible Approach to Termination with General Recursion
This paper proposes a type-and-effect system called Teqt, which distinguishes
terminating terms and total functions from possibly diverging terms and partial
functions, for a lambda calculus with general recursion and equality types. The
central idea is to include a primitive type-form "Terminates t", expressing
that term t is terminating; and then allow terms t to be coerced from possibly
diverging to total, using a proof of Terminates t. We call such coercions
termination casts, and show how to implement terminating recursion using them.
For the meta-theory of the system, we describe a translation from Teqt to a
logical theory of termination for general recursive, simply typed functions.
Every typing judgment of Teqt is translated to a theorem expressing the
appropriate termination property of the computational part of the Teqt term.Comment: In Proceedings PAR 2010, arXiv:1012.455
A phenomenological equation of state for isospin asymmetric nuclear matter
A phenomenological momentum-independent (MID) model is constructed to
describe the equation of state (EOS) for isospin asymmetric nuclear matter,
especially the density dependence of the nuclear symmetry energy
. This model can reasonably describe the general
properties of the EOS for symmetric nuclear matter and the symmetry energy
predicted by both the sophisticated isospin and momentum dependent MDI model
and the Skyrme-Hartree-Fock approach. We find that there exists a nicely linear
correlation between and as well as between and , where and represent, respectively, the
slope and curvature parameters of the symmetry energy at the normal nuclear
density while and are, respectively, the
incompressibility and the third-order derivative parameter of symmetric nuclear
matter at . These correlations together with the empirical
constraints on , and lead to an
estimation of -477 MeV MeV for the
second-order isospin asymmetry expansion coefficient for the incompressibility
of asymmetric nuclear matter at the saturation point.Comment: 9 pages, 4 figures, contribution to Special Topic on Large-Scale
Scientific Facilities (LSSF) in Science in China Series G: Physics, Mechanics
& Astronom
Human Pentraxin 3 Binds to the Complement Regulator C4b-Binding Protein
The long pentraxin 3 (PTX3) is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP). A PTX3-binding site was identified within short consensus repeats 1–3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage
- …