25,899 research outputs found

    Isotrivial VMRT-structures of complete intersection type

    Get PDF
    The family of varieties of minimal rational tangents on a quasi-homogeneous projective manifold is isotrivial. Conversely, are projective manifolds with isotrivial varieties of minimal rational tangents quasi-homogenous? We will show that this is not true in general, even when the projective manifold has Picard number 1. In fact, an isotrivial family of varieties of minimal rational tangents needs not be locally flat in differential geometric sense. This leads to the question for which projective variety Z, the Z-isotriviality of varieties of minimal rational tangents implies local flatness. Our main result verifies this for many cases of Z among complete intersections.Comment: Some errors in Section 8 and Lemma 8.1 corrected. To appear in The Asian Journal of Mathematics (AJM) special issue dedicated to Ngaiming Mok's 60th birthda

    Isotrivial VMRT-structures of complete intersection type

    No full text

    Cosmological perturbations in a gravity with quadratic order curvature couplings

    Get PDF
    We present a set of equations describing the evolution of the scalar-type cosmological perturbation in a gravity with general quadratic order curvature coupling terms. Equations are presented in a gauge ready form, thus are ready to implement various temporal gauge conditions depending on the problems. The Ricci-curvature square term leads to a fourth-order differential equation for describing the spacetime fluctuations in a spatially homogeneous and isotropic cosmological background.Comment: 5 pages, no figure, To appear in Phys. Rev.

    Quantum fluctuations of Cosmological Perturbations in Generalized Gravity

    Get PDF
    Recently, we presented a unified way of analysing classical cosmological perturbation in generalized gravity theories. In this paper, we derive the perturbation spectrums generated from quantum fluctuations again in unified forms. We consider a situation where an accelerated expansion phase of the early universe is realized in a particular generic phase of the generalized gravity. We take the perturbative semiclassical approximation which treats the perturbed parts of the metric and matter fields as quantum mechanical operators. Our generic results include the conventional power-law and exponential inflations in Einstein's gravity as special cases.Comment: 5 pages, revtex, no figure

    Conserved cosmological structures in the one-loop superstring effective action

    Get PDF
    A generic form of low-energy effective action of superstring theories with one-loop quantum correction is well known. Based on this action we derive the complete perturbation equations and general analytic solutions in the cosmological spacetime. Using the solutions we identify conserved quantities characterizing the perturbations: the amplitude of gravitational wave and the perturbed three-space curvature in the uniform-field gauge both in the large-scale limit, and the angular-momentum of rotational perturbation are conserved independently of changing gravity sector. Implications for calculating perturbation spectra generated in the inflation era based on the string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.

    Unified Analysis of Cosmological Perturbations in Generalized Gravity

    Full text link
    In a class of generalized Einstein's gravity theories we derive the equations and general asymptotic solutions describing the evolution of the perturbed universe in unified forms. Our gravity theory considers general couplings between the scalar field and the scalar curvature in the Lagrangian, thus includes broad classes of generalized gravity theories resulting from recent attempts for the unification. We analyze both the scalar-type mode and the gravitational wave in analogous ways. For both modes the large scale evolutions are characterized by the same conserved quantities which are valid in the Einstein's gravity. This unified and simple treatment is possible due to our proper choice of the gauges, or equivalently gauge invariant combinations.Comment: 4 pages, revtex, no figure

    Relativistic Hydrodynamic Cosmological Perturbations

    Get PDF
    Relativistic cosmological perturbation analyses can be made based on several different fundamental gauge conditions. In the pressureless limit the variables in certain gauge conditions show the correct Newtonian behaviors. Considering the general curvature (KK) and the cosmological constant (Λ\Lambda) in the background medium, the perturbed density in the comoving gauge, and the perturbed velocity and the perturbed potential in the zero-shear gauge show the same behavior as the Newtonian ones in general scales. In the first part, we elaborate these Newtonian correspondences. In the second part, using the identified gauge-invariant variables with correct Newtonian correspondences, we present the relativistic results with general pressures in the background and perturbation. We present the general super-sound-horizon scale solutions of the above mentioned variables valid for general KK, Λ\Lambda, and generally evolving equation of state. We show that, for vanishing KK, the super-sound-horizon scale evolution is characterised by a conserved variable which is the perturbed three-space curvature in the comoving gauge. We also present equations for the multi-component hydrodynamic situation and for the rotation and gravitational wave.Comment: 16 pages, no figure, To appear in Gen. Rel. Gra

    Origin of the mixed-order transition in multiplex networks: the Ashkin-Teller model

    Full text link
    Recently, diverse phase transition (PT) types have been obtained in multiplex networks, such as discontinuous, continuous, and mixed-order PTs. However, they emerge from individual systems, and there is no theoretical understanding of such PTs in a single framework. Here, we study a spin model called the Ashkin-Teller (AT) model in a mono-layer scale-free network; this can be regarded as a model of two species of Ising spin placed on each layer of a double-layer network. The four-spin interaction in the AT model represents the inter-layer interaction in the multiplex network. Diverse PTs emerge depending on the inter-layer coupling strength and network structure. Especially, we find that mixed-order PTs occur at the critical end points. The origin of such behavior is explained in the framework of Landau-Ginzburg theory.Comment: 10 pages, 5 figure

    Electron-boson spectral density of LiFeAs obtained from optical data

    Full text link
    We analyze existing optical data in the superconducting state of LiFeAs at T=T = 4 K, to recover its electron-boson spectral density. A maximum entropy technique is employed to extract the spectral density I2χ(ω)I^2\chi(\omega) from the optical scattering rate. Care is taken to properly account for elastic impurity scattering which can importantly affect the optics in an ss-wave superconductor, but does not eliminate the boson structure. We find a robust peak in I2χ(ω)I^2\chi(\omega) centered about ΩR≅\Omega_R \cong 8.0 meV or 5.3 kBTck_B T_c (with Tc=T_c = 17.6 K). Its position in energy agrees well with a similar structure seen in scanning tunneling spectroscopy (STS). There is also a peak in the inelastic neutron scattering (INS) data at this same energy. This peak is found to persist in the normal state at T=T = 23 K. There is evidence that the superconducting gap is anisotropic as was also found in low temperature angular resolved photoemission (ARPES) data.Comment: 17 pages, 6 figure
    • 

    corecore