19,667 research outputs found
Dynamic model for failures in biological systems
A dynamic model for failures in biological organisms is proposed and studied
both analytically and numerically. Each cell in the organism becomes dead under
sufficiently strong stress, and is then allowed to be healed with some
probability. It is found that unlike the case of no healing, the organism in
general does not completely break down even in the presence of noise. Revealed
is the characteristic time evolution that the system tends to resist the stress
longer than the system without healing, followed by sudden breakdown with some
fraction of cells surviving. When the noise is weak, the critical stress beyond
which the system breaks down increases rapidly as the healing parameter is
raised from zero, indicative of the importance of healing in biological
systems.Comment: To appear in Europhys. Let
(2,2)-Formalism of General Relativity: An Exact Solution
I discuss the (2,2)-formalism of general relativity based on the
(2,2)-fibration of a generic 4-dimensional spacetime of the Lorentzian
signature. In this formalism general relativity is describable as a Yang-Mills
gauge theory defined on the (1+1)-dimensional base manifold, whose local gauge
symmetry is the group of the diffeomorphisms of the 2-dimensional fibre
manifold. After presenting the Einstein's field equations in this formalism, I
solve them for spherically symmetric case to obtain the Schwarzschild solution.
Then I discuss possible applications of this formalism.Comment: 2 figures included, IOP style file neede
Nano granular metallic Fe - oxygen deficient TiO composite films: A room temperature, highly carrier polarized magnetic semiconductor
Nano granular metallic iron (Fe) and titanium dioxide (TiO) were
co-deposited on (100) lanthanum aluminate (LaAlO) substrates in a low
oxygen chamber pressure using a pulsed laser ablation deposition (PLD)
technique. The co-deposition of Fe and TiO resulted in 10 nm
metallic Fe spherical grains suspended within a TiO matrix. The
films show ferromagnetic behavior with a saturation magnetization of 3100 Gauss
at room temperature. Our estimate of the saturation magnetization based on the
size and distribution of the Fe spheres agreed well with the measured value.
The film composite structure was characterized as p-type magnetic semiconductor
at 300 K with a carrier density of the order of . The
hole carriers were excited at the interface between the nano granular Fe and
TiO matrix similar to holes excited in the metal/n-type
semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS)
devices. From the large anomalous Hall effect directly observed in these films
it follows that the holes at the interface were strongly spin polarized.
Structure and magneto transport properties suggested that these PLD films have
potential nano spintronics applications.Comment: 6 pages in Latex including 8 figure
Pilot interaction with automated airborne decision making systems
The use of advanced software engineering methods (e.g., from artificial intelligence) to aid aircraft crews in procedure selection and execution is investigated. Human problem solving in dynamic environments as effected by the human's level of knowledge of system operations is examined. Progress on the development of full scale simulation facilities is also discussed
Dynamic model of fiber bundles
A realistic continuous-time dynamics for fiber bundles is introduced and
studied both analytically and numerically. The equation of motion reproduces
known stationary-state results in the deterministic limit while the system
under non-vanishing stress always breaks down in the presence of noise.
Revealed in particular is the characteristic time evolution that the system
tends to resist the stress for considerable time, followed by sudden complete
rupture. The critical stress beyond which the complete rupture emerges is also
obtained
New Hamiltonian formalism and quasi-local conservation equations of general relativity
I describe the Einstein's gravitation of 3+1 dimensional spacetimes using the
(2,2) formalism without assuming isometries. In this formalism, quasi-local
energy, linear momentum, and angular momentum are identified from the four
Einstein's equations of the divergence-type, and are expressed geometrically in
terms of the area of a two-surface and a pair of null vector fields on that
surface. The associated quasi-local balance equations are spelled out, and the
corresponding fluxes are found to assume the canonical form of energy-momentum
flux as in standard field theories. The remaining non-divergence-type
Einstein's equations turn out to be the Hamilton's equations of motion, which
are derivable from the {\it non-vanishing} Hamiltonian by the variational
principle. The Hamilton's equations are the evolution equations along the
out-going null geodesic whose {\it affine} parameter serves as the time
function. In the asymptotic region of asymptotically flat spacetimes, it is
shown that the quasi-local quantities reduce to the Bondi energy, linear
momentum, and angular momentum, and the corresponding fluxes become the Bondi
fluxes. The quasi-local angular momentum turns out to be zero for any
two-surface in the flat Minkowski spacetime. I also present a candidate for
quasi-local {\it rotational} energy which agrees with the Carter's constant in
the asymptotic region of the Kerr spacetime. Finally, a simple relation between
energy-flux and angular momentum-flux of a generic gravitational radiation is
discussed, whose existence reflects the fact that energy-flux always
accompanies angular momentum-flux unless the flux is an s-wave.Comment: 36 pages, 3 figures, RevTex
Insights into a dinoflagellate genome through expressed sequence tag analysis
BACKGROUND: Dinoflagellates are important marine primary producers and grazers and cause toxic "red tides". These taxa are characterized by many unique features such as immense genomes, the absence of nucleosomes, and photosynthetic organelles (plastids) that have been gained and lost multiple times. We generated EST sequences from non-normalized and normalized cDNA libraries from a culture of the toxic species Alexandrium tamarense to elucidate dinoflagellate evolution. Previous analyses of these data have clarified plastid origin and here we study the gene content, annotate the ESTs, and analyze the genes that are putatively involved in DNA packaging. RESULTS: Approximately 20% of the 6,723 unique (11,171 total 3'-reads) ESTs data could be annotated using Blast searches against GenBank. Several putative dinoflagellate-specific mRNAs were identified, including one novel plastid protein. Dinoflagellate genes, similar to other eukaryotes, have a high GC-content that is reflected in the amino acid codon usage. Highly represented transcripts include histone-like (HLP) and luciferin binding proteins and several genes occur in families that encode nearly identical proteins. We also identified rare transcripts encoding a predicted protein highly similar to histone H2A.X. We speculate this histone may be retained for its role in DNA double-strand break repair. CONCLUSION: This is the most extensive collection to date of ESTs from a toxic dinoflagellate. These data will be instrumental to future research to understand the unique and complex cell biology of these organisms and for potentially identifying the genes involved in toxin production
Comparison of Quality and Production by Different Silage Making Methods of Barley Cultivated in the Paddy after Rice Harvest
The objective of this study was to compare whether the productivity and production cost of whole crop barley was affected by silage making methods at early bloom stage in the rice field. In nutritive value, quality and palatability of silage, baled silage making method was a little higher than that of crushed silage making. On the other hand, in terms of dry matter and total digestible nutrient (TDN) production cost, proper work capacity at about 15 ha or more was desirable when making baled silage. In this case, the estimated dry matter production cost and TDN cost per ha was US 210 in baled silage making, and US 209 in crushed silage making, respectively
Pilot interaction with automated airborne decision making systems
Two project areas were pursued: the intelligent cockpit and human problem solving. The first area involves an investigation of the use of advanced software engineering methods to aid aircraft crews in procedure selection and execution. The second area is focused on human problem solving in dynamic environments, particulary in terms of identification of rule-based models land alternative approaches to training and aiding. Progress in each area is discussed
- …