48 research outputs found

    A Wasserstein approach to the one-dimensional sticky particle system

    Full text link
    We present a simple approach to study the one-dimensional pressureless Euler system via adhesion dynamics in the Wasserstein space of probability measures with finite quadratic moments. Starting from a discrete system of a finite number of "sticky" particles, we obtain new explicit estimates of the solution in terms of the initial mass and momentum and we are able to construct an evolution semigroup in a measure-theoretic phase space, allowing mass distributions with finite quadratic moment and corresponding L^2-velocity fields. We investigate various interesting properties of this semigroup, in particular its link with the gradient flow of the (opposite) squared Wasserstein distance. Our arguments rely on an equivalent formulation of the evolution as a gradient flow in the convex cone of nondecreasing functions in the Hilbert space L^2(0,1), which corresponds to the Lagrangian system of coordinates given by the canonical monotone rearrangement of the measures.Comment: Added reference

    Dynamics of a thin shell in the Reissner-Nordstrom metric

    Full text link
    We describe the dynamics of a thin spherically symmetric gravitating shell in the Reissner-Nordstrom metric of the electrically charged black hole. The energy-momentum tensor of electrically neutral shell is modelled by the perfect fluid with a polytropic equation of state. The motion of a shell is described fully analytically in the particular case of the dust equation of state. We construct the Carter-Penrose diagrams for the global geometry of the eternal black hole, which illustrate all possible types of solutions for moving shell. It is shown that for some specific range of initial parameters there are possible the stable oscillating motion of the shell transferring it consecutively in infinite series of internal universes. We demonstrate also that this oscillating type of motion is possible for an arbitrary polytropic equation of state on the shell.Comment: 17 pages, 7 figure

    A Low Concentration of Ethanol Impairs Learning but Not Motor and Sensory Behavior in Drosophila Larvae

    Get PDF
    Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration) on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US) intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects

    First M87 Event Horizon Telescope Results. VII. Polarization of the Ring

    Get PDF
    In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication
    corecore