7,473 research outputs found
Loop Variables and Gauge Invariance in (Open) Bosonic String Theory
We give a simplified and more complete description of the loop variable
approach for writing down gauge invariant equations of motion for the fields of
the open string. A simple proof of gauge invariance to all orders is given. In
terms of loop variables, the interacting equations look exactly like the free
equations, but with a loop variable depending on an extra parameter, thus
making it a band of finite width. The arguments for gauge invariance work
exactly as in the free case. We show that these equations are Wilsonian RG
equations with a finite world-sheet cutoff and that in the infrared limit,
equivalence with the Callan-Symanzik -functions should ensure that they
reproduce the on-shell scattering amplitudes in string theory. It is applied to
the tachyon-photon system and the general arguments for gauge invariance can be
easily checked to the order calculated. One can see that when there is a finite
world sheet cutoff in place, even the U(1) invariance of the equations for the
photon, involves massive mode contributions. A field redefinition involving the
tachyon is required to get the gauge transformations of the photon into
standard form.Comment: 20 pages, Late
Diagrammatic analysis of some contributions to the ΔI = 1/2 rule
Higher-order gluon corrections to a particular mechanism for the ΔI=1/2 rule are computed using quantum chromodynamics. It is found that due to gauge invariance these corrections leave the form of the lowest-order result essentially unchange
g-function in perturbation theory
We present some explicit computations checking a particular form of gradient
formula for a boundary beta function in two-dimensional quantum field theory on
a disc. The form of the potential function and metric that we consider were
introduced in hep-th/9210065, hep-th/9311177 in the context of background
independent open string field theory. We check the gradient formula to the
third order in perturbation theory around a fixed point. Special consideration
is given to situations when resonant terms are present exhibiting logarithmic
divergences and universal nonlinearities in beta functions. The gradient
formula is found to work to the given order.Comment: 1+14 pages, Latex; v.2: typos corrected; v.3: minor corrections, to
appear in IJM
Holographic Dual of BCFT
We propose a holographic dual of a conformal field theory defined on a
manifold with boundaries, i.e. boundary conformal field theory (BCFT). Our new
holography, which may be called AdS/BCFT, successfully calculates the boundary
entropy or g-function in two dimensional BCFTs and it agrees with the finite
part of the holographic entanglement entropy. Moreover, we can naturally derive
a holographic g-theorem. We also analyze the holographic dual of an interval at
finite temperature and show that there is a first order phase transition.Comment: 5 pages, 3 figs, a reference added, typos corrected, to be published
in PR
Distortion of Schwarzschild-anti-de Sitter black holes to black strings
Motivated by the existence of black holes with various topologies in
four-dimensional spacetimes with a negative cosmological constant, we study
axisymmetric static solutions describing any large distortions of
Schwarzschild-anti-de Sitter black holes parametrized by the mass . Under
the approximation such that is much larger than the anti-de Sitter radius,
it is found that a cylindrically symmetric black string is obtained as a
special limit of distorted spherical black holes. Such a prolonged distortion
of the event horizon connecting a Schwarzschild-anti-de Sitter black hole to a
black string is allowed without violating both the usual black hole
thermodynamics and the hoop conjecture for the horizon circumference.Comment: 13 pages, accepted for publication in Physical Review
Thermodynamics and Stability of Higher Dimensional Rotating (Kerr) AdS Black Holes
We study the thermodynamic and gravitational stability of Kerr anti-de Sitter
black holes in five and higher dimensions. We show, in the case of equal
rotation parameters, , that the Kerr-AdS background metrics become
stable, both thermodynamically and gravitationally, when the rotation
parameters take values comparable to the AdS curvature radius. In turn, a
Kerr-AdS black hole can be in thermal equilibrium with the thermal radiation
around it only when the rotation parameters become not significantly smaller
than the AdS curvature radius. We also find with equal rotation parameters that
a Kerr-AdS black hole is thermodynamically favored against the existence of a
thermal AdS space, while the opposite behavior is observed in the case of a
single non-zero rotation parameter. The five dimensional case is however
different and also special in that there is no high temperature thermal AdS
phase regardless of the choice of rotation parameters. We also verify that at
fixed entropy, the temperature of a rotating black hole is always bounded above
by that of a non-rotating black hole, in four and five dimensions, but not in
six and more dimensions (especially, when the entropy approaches zero or the
minimum of entropy does not correspond to the minimum of temperature). In this
last context, the six dimensional case is marginal.Comment: 15 pages, 23 eps figures, RevTex
On the Problems with Background Independence in String Theory
The problems with background independence are discussed in the example of
open string theory. Based on the recent proposal by Witten I calculate the
String Field Theory action in conformal perturbation theory to second order and
demonstrate that the proper treatment of contact terms leads to nontrivial
equations of motion. I conjecture the form of the field theory action to all
orders.Comment: 15p., Preprint IASSNS-HEP-93/6
Thermodynamics of Rotating Charged Black Branes in Third Order Lovelock Gravity and the Counterterm Method
We generalize the quasilocal definition of the stress energy tensor of
Einstein gravity to the case of third order Lovelock gravity, by introducing
the surface terms that make the action well-defined. We also introduce the
boundary counterterm that removes the divergences of the action and the
conserved quantities of the solutions of third order Lovelock gravity with zero
curvature boundary at constant and . Then, we compute the charged
rotating solutions of this theory in dimensions with a complete set of
allowed rotation parameters. These charged rotating solutions present black
hole solutions with two inner and outer event horizons, extreme black holes or
naked singularities provided the parameters of the solutions are chosen
suitable. We compute temperature, entropy, charge, electric potential, mass and
angular momenta of the black hole solutions, and find that these quantities
satisfy the first law of thermodynamics. We find a Smarr-type formula and
perform a stability analysis by computing the heat capacity and the determinant
of Hessian matrix of mass with respect to its thermodynamic variables in both
the canonical and the grand-canonical ensembles, and show that the system is
thermally stable. This is commensurate with the fact that there is no
Hawking-Page phase transition for black objects with zero curvature horizon.Comment: 19 pages, 1 figure, a few references added, typos correcte
Decay widths of large-spin mesons from the non-critical string/gauge duality
In this paper, we use the non-critical string/gauge duality to calculate the
decay widths of large-spin mesons. Since it is believed that the string theory
of QCD is not a ten dimensional theory, we expect that the non-critical
versions of ten dimensional black hole backgrounds lead to better results than
the critical ones. For this purpose we concentrate on the confining theories
and consider two different six dimensional black hole backgrounds. We choose
the near extremal AdS6 model and the near extremal KM model to compute the
decay widths of large-spin mesons. Then, we present our results from these two
non-critical backgrounds and compare them together with those from the critical
models and experimental data.Comment: 21 pages and 3 figure
The basic cohomology of the twisted N=16, D=2 super Maxwell theory
We consider a recently proposed two-dimensional Abelian model for a Hodge
theory, which is neither a Witten type nor a Schwarz type topological theory.
It is argued that this model is not a good candidate for a Hodge theory since,
on-shell, the BRST Laplacian vanishes. We show, that this model allows for a
natural extension such that the resulting topological theory is of Witten type
and can be identified with the twisted N=16, D=2 super Maxwell theory.
Furthermore, the underlying basic cohomology preserves the Hodge-type structure
and, on-shell, the BRST Laplacian does not vanish.Comment: 9 pages, Latex; new Section 4 showing the invariants added; 2
references and relating remarks adde
- …