609 research outputs found
Electron tunnel sensor technology
Researchers designed and constructed a novel electron tunnel sensor which takes advantage of the mechanical properties of micro-machined silicon. For the first time, electrostatic forces are used to control the tunnel electrode separation, thereby avoiding the thermal drift and noise problems associated with piezoelectric actuators. The entire structure is composed of micro-machined silicon single crystals, including a folded cantilever spring and a tip. The application of this sensor to the development of a sensitive accelerometer is described
Astronomy using basic Mark 2 very long baseline interferometry
Two experiments were performed in April and September 1976 to determine precise positions of radio sources using conventional Mark 2 VLBI techniques. Four stations in the continental United States observed at a wavelength of 18 cm. The recording bandwidth was 2 MHz. The preliminary results using analyses of fringe rate and delay are discussed and the source positions compared with the results of other measurements
Excess sub-millimetre emission from GRS 1915+105
We present the first detections of the black hole X-ray binary GRS 1915+105
at sub-millimetre wavelengths. We clearly detect the source at 350 GHz on two
epochs, with significant variability over the 24 hr between epochs.
Quasi-simultaneous radio monitoring indicates an approximately flat spectrum
from 2 - 350 GHz, although there is marginal evidence for a minimum in the
spectrum between 15 - 350 GHz. The flat spectrum and correlated variability
imply that the sub-mm emission arises from the same synchrotron source as the
radio emission. This source is likely to be a quasi-steady partially
self-absorbed jet, in which case these sub-mm observations probe significantly
closer to the base of the jet than do radio observations and may be used in
future as a valuable diagnostic of the disc:jet connection in this source.Comment: 5 pages, 3 figures, accepted for publication in MNRA
Tunnel effect wave energy detection
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction
Tunnel effect measuring systems and particle detectors
Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction
MERLIN observations of relativistic ejections from GRS 1915+105
We present high resolution MERLIN radio images of multiple relativistic
ejections from GRS 1915+105 in 1997 October / November. The observations were
made at a time of complex radio behaviour, corresponding to multiple
optically-thin outbursts and several days of rapid radio flux oscillations. The
radio imaging resolved four major ejection events from the system. As
previously reported from earlier VLA observations of the source, we observe
apparent superluminal motions resulting from intrinsically relativistic motions
of the ejecta. However, our measured proper motions are significantly greater
than those observed on larger angular scales with the VLA. Under the assumption
of an intrinsically symmetric ejection, we can place an upper limit on the
distance to GRS 1915+105 of 11.2 +/- 0.8 kpc. Solutions for the velocities
unambiguously require a higher intrinsic speed by about 0.1c than that derived
from the earlier VLA observations, whilst the angle to the line-of-sight is not
found to be significantly different. At a distance of 11 kpc, we obtain
solutions of v = 0.98 (-0.05,+0.02)c and theta = 66 +/- 2 degrees. The jet also
appears to be curved on a scale which corresponds to a period of around 7 days.
We observe significant evolution of the linear polarisation of the approaching
component, with large rotations in position angle and a general decrease in
fractional polarisation. The power input into the formation of the jet is very
large, >10^38 erg/s at 11 kpc for a pair plasma. If the plasma contains a cold
proton for each electron, then the mass outflow rate, >10^18 g/sec is
comparable to inflow rates previously derived from X-ray spectral fits.Comment: 14 pages, 7 figures. Accepted for publication in MNRA
Cygnus X-3 in outburst : quenched radio emission, radiation losses and variable local opacity
We present multiwavelength observations of Cygnus X-3 during an extended
outburst in 1994 February - March. Intensive radio monitoring at 13.3, 3.6 &
2.0 cm is complemented by observations at (sub)millimetre and infrared
wavelengths, which find Cyg X-3 to be unusually bright and variable, and
include the first reported detection of the source at 0.45 mm. We report the
first confirmation of quenched radio emission prior to radio flaring
independent of observations at Green Bank. The observations reveal evidence for
wavelength-dependent radiation losses and gradually decreasing opacity in the
environment of the radio jet. We find that the radiation losses are likely to
be predominantly inverse Compton losses experienced by the radio-emitting
electrons in the strong radiation field of a luminous companion to the compact
object. We interpret the decreasing opacity during the flare sequence as
resulting from a decreasing proportion of thermal electrons entrained in the
jet, reflecting a decreasing density in the region of jet formation. We
present, drawing in part on the work of other authors, a model based upon
mass-transfer rate instability predicting gamma-ray, X-ray, infrared and radio
trends during a radio flaring sequence.Comment: LaTeX, 11 pages, 6 figures. Submitted to MNRA
- …