34,120 research outputs found
Metal drilling with portable hand drills
Study of metal drilling solves problems of excessive burring, oversized holes, and out-of-round holes. Recommendations deal with using the proper chemical coolants, applying the coolants effectively, employing cutting oils, and dissipating the heat caused by drilling
Intensities of backscatter Mössbauer spectra
The intensities of Îłâray and xâray backscatter Mössbauer spectra of ^(57)Fe nuclei in different matrix materials were studied theoretically and experimentally. A previous analysis by J. J. Bara [Phys. Status Solidi A 58, 349 (1980] showed that negative peak intensities occur in backscatter Îłâray spectra when the ^(57)Fe nuclei are in a matrix of light elements. We report a confirmation of this work and offer a simple explanation of the phenomenon. The present paper extends Baraâs analysis to the case of conversion xâray spectra; expressions for the intensity of conversion xâray spectra as a function of absorber thickness and absorber material parameters are presented. We show that negative peak intensities are expected in conversion xâray spectra when the ^(57)Fe nuclei are in a matrix of heavy elements
Spacetime geometry of static fluid spheres
We exhibit a simple and explicit formula for the metric of an arbitrary
static spherically symmetric perfect fluid spacetime. This class of metrics
depends on one freely specifiable monotone non-increasing generating function.
We also investigate various regularity conditions, and the constraints they
impose. Because we never make any assumptions as to the nature (or even the
existence) of an equation of state, this technique is useful in situations
where the equation of state is for whatever reason uncertain or unknown.
To illustrate the power of the method we exhibit a new form of the
``Goldman--I'' exact solution and calculate its total mass. This is a
three-parameter closed-form exact solution given in terms of algebraic
combinations of quadratics. It interpolates between (and thereby unifies) at
least six other reasonably well-known exact solutions.Comment: Plain LaTeX 2e -- V2: now 22 pages; minor presentation changes in the
first part of the paper -- no physics modifications; major additions to the
examples section: the Gold-I solution is shown to be identical to the G-G
solution. The interior Schwarzschild, Stewart, Buch5 XIII, de Sitter, anti-de
Sitter, and Einstein solutions are all special cases. V3: Reference,
footnotes, and acknowledgments added, typos fixed -- no physics
modifications. V4: Technical problems with mass formula fixed -- affects
discussion of our examples but not the core of the paper. Version to appear
in Classical and Quantum Gravit
Psychological Issues in Online Adaptive Task Allocation
Adaptive aiding is an idea that offers potential for improvement over many current approaches to aiding in human-computer systems. The expected return of tailoring the system to fit the user could be in the form of improved system performance and/or increased user satisfaction. Issues such as the manner in which information is shared between human and computer, the appropriate division of labor between them, and the level of autonomy of the aid are explored. A simulated visual search task was developed. Subjects are required to identify targets in a moving display while performing a compensatory sub-critical tracking task. By manipulating characteristics of the situation such as imposed task-related workload and effort required to communicate with the computer, it is possible to create conditions in which interaction with the computer would be more or less desirable. The results of preliminary research using this experimental scenario are presented, and future directions for this research effort are discussed
Electrically driven convection in a thin annular film undergoing circular Couette flow
We investigate the linear stability of a thin, suspended, annular film of
conducting fluid with a voltage difference applied between its inner and outer
edges. For a sufficiently large voltage, such a film is unstable to
radially-driven electroconvection due to charges which develop on its free
surfaces. The film can also be subjected to a Couette shear by rotating its
inner edge. This combination is experimentally realized using films of smectic
A liquid crystals. In the absence of shear, the convective flow consists of a
stationary, azimuthally one-dimensional pattern of symmetric, counter-rotating
vortex pairs. When Couette flow is applied, an azimuthally traveling pattern
results. When viewed in a co-rotating frame, the traveling pattern consists of
pairs of asymmetric vortices. We calculate the neutral stability boundary for
arbitrary radius ratio and Reynolds number of the shear
flow, and obtain the critical control parameter and the critical azimuthal mode number . The
Couette flow suppresses the onset of electroconvection, so that . The calculated suppression is
compared with experiments performed at and .Comment: 17 pages, 2 column with 9 included eps figures. See also
http://mobydick.physics.utoronto.c
Charged Vacuum Bubble Stability
A type of scenario is considered where electrically charged vacuum bubbles,
formed from degenerate or nearly degenerate vacuua separated by a thin domain
wall, are cosmologically produced due to the breaking of a discrete symmetry,
with the bubble charge arising from fermions residing within the domain wall.
Stability issues associated with wall tension, fermion gas, and Coulombic
effects for such configurations are examined. The stability of a bubble depends
upon parameters such as the symmetry breaking scale and the fermion coupling. A
dominance of either the Fermi gas or the Coulomb contribution may be realized
under certain conditions, depending upon parameter values.Comment: 16 pages,revtex; accepted for publication in Phys.Rev.
Pilot interaction with automated airborne decision making systems
The use of advanced software engineering methods (e.g., from artificial intelligence) to aid aircraft crews in procedure selection and execution is investigated. Human problem solving in dynamic environments as effected by the human's level of knowledge of system operations is examined. Progress on the development of full scale simulation facilities is also discussed
- âŠ