14,711 research outputs found

    Superconductivity-Related Insulating Behavior

    Full text link
    We present the results of an experimental study of superconducting, disordered, thin-films of amorphous Indium Oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (BB). We find that the high-BB insulator exhibits activated transport with a characteristic temperature, TIT_I. TIT_I has a maximum value (TIpT_{I}^p) that is close to the superconducting transition temperature (TcT_c) at BB = 0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. TIpT_{I}^p and TcT_c display opposite dependences on the disorder strength.Comment: Tex file and 5 figures; Revised version; To appear in Phys. Rev. Lett. (2004

    Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands

    Full text link
    We have built a line list in the near-infrared J and H bands (1.00-1.34, 1.49-1.80 um) by gathering a series of laboratory and computed line lists. Oscillator strengths and damping constants were computed or obtained by fitting the solar spectrum. The line list presented in this paper is, to our knowledge, the most complete one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at http://www.iagusp.usp.br/~jorge

    Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions

    Full text link
    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts, a) electric charges present with all material particles, b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation and c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A specific solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200

    The neutral silicon-vacancy center in diamond: spin polarization and lifetimes

    Get PDF
    We demonstrate optical spin polarization of the neutrally-charged silicon-vacancy defect in diamond (SiV0\mathrm{SiV^{0}}), an S=1S=1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but non-zero at below-resonant energies. We measure an ensemble spin coherence time T2>100 μsT_2>100~\mathrm{\mu s} at low-temperature, and a spin relaxation limit of T1>25 sT_1>25~\mathrm{s}. Optical spin state initialization around 946 nm allows independent initialization of SiV0\mathrm{SiV^{0}} and NV\mathrm{NV^{-}} within the same optically-addressed volume, and SiV0\mathrm{SiV^{0}} emits within the telecoms downconversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV0\mathrm{SiV^{0}} is a promising candidate for a long-range quantum communication technology

    Optical properties of Ti3SiC2 and Ti4AlN3

    Get PDF
    The dielectric functions of the MAX phases, Ti3SiC2 and Ti4AlN3, have been determined from first principles calculations. We compared the dielectric functions and the reflectivityspectra of Ti3SiC2 and Ti4AlN3 with those of TiC and TiN. The optical spectra were analyzed by means of the electronic structure, which provides theoretical understanding of the conduction mechanism of these two phases. We found that Ti4AlN3 can be used to avoid solar heating and also increase the radiative cooling due to the increased thermal emittance as compared to TiN. Ti4AlN3 can therefore be a candidate coating material for temperature control of space vehicles

    Cyclotron resonance lineshape in a Wigner crystal

    Full text link
    The cyclotron resonance absorption spectrum in a Wigner crystal is calculated. Effects of spin-splitting are modelled by substitutional disorder, and calculated in the coherent potential approximation. Due to the increasing strength of the dipole-dipole interaction, the results show a crossover from a double-peak spectrum at small filling factors to a single-peak spectrum at filling factors \agt 1/6. Radiation damping and magnetophonon scattering can also influence the cyclotron resonance. The results are in very good agreement with experiments.Comment: 4 pages REVTEX, attempt to append 3 figures that seem to have been lost last tim

    High Excitation Molecular Gas in the Magellanic Clouds

    Full text link
    We present the first survey of submillimeter CO 4-3 emission in the Magellanic Clouds. The survey is comprised of 15 6'x6' maps obtained using the AST/RO telescope toward the molecular peaks of the Large and Small Magellanic Clouds. We have used these data to constrain the physical conditions in these objects, in particular their molecular gas density and temperature. We find that there are significant amounts of molecular gas associated with most of these molecular peaks, and that high molecular gas temperatures are pervasive throughout our sample. We discuss whether this may be due to the low metallicities and the associated dearth of gas coolants in the Clouds, and conclude that the present sample is insufficient to assert this effect.Comment: 18 pages, 3 figures, 5 tables. To appear in Ap

    Particle Size Distribution and Human Respiratory Deposition of Trace Metals in Indoor Work Environments

    Get PDF
    Respiratory response to inhalation of fine particles has been investigated for the aerosol generated by welding. Particles were sampled using a pair of 5-stage cascade impactors operating at 1 l./min flow rate. The subject exhaled into one impactor through an air ballast arrangement, and the other impactor simultaneously sampled the surrounding air. Particle size fractions were analyzed for principal elemental constituents from sulphur to lead using proton induced X-ray emission, PIXE. The results indicated a complex respiratory response, including both increase in particle size due to exposure to high humidity in the respiratory tract and deposition of particles during inhalation. The response was found to be different for the element group Mn, Cr, Fe, Ni compared to the group K, Ca, Ti by observing the associations among the elements as a function of particle size in the inhaled and exhaled aerosol. However, for respiratory deposition efficiency alone in all runs averaged together, no systematic differences between the different elements are demonstrated at the 99 % confidence level

    New Pseudo-Phase Structure for α\alpha-Pu

    Full text link
    In this paper we propose a new pseudo-phase crystal structure, based on an orthorhombic distortion of the diamond structure, for the ground-state α\alpha-phase of plutonium. Electronic-structure calculations in the generalized-gradient approximation give approximately the same total energy for the two structures. Interestingly, our new pseudo-phase structure is the same as the Pu γ\gamma-phase structure except with very different b/a and c/a ratios. We show how the contraction relative to the γ\gamma phase, principally in the zz direction, leads to an α\alpha-like structure in the [0,1,1] plane. This is an important link between two complex structures of plutonium and opens new possibilities for exploring the very rich phase diagram of Pu through theoretical calculations
    corecore