481 research outputs found

    Quantified Morphology of HI Disks in the Universe

    Get PDF
    he upcoming new perspective of the high redshift Universe in the 21 cm line of atomic hydrogen opens possibilities to explore topics of spiral disk evolution, hitherto reserved for the optical regime. The growth of spiral gas disks over Cosmic time can be explored with the new generation of radio telescopes, notably the SKA, and its precursors, as accurately as with the Hubble Space Telescope for stellar disks. Since the atomic hydrogen gas is the building block of these disks, it should trace their formation accurately. Morphology of HI disks can now equally be quantified over Cosmic time. In studies of HST deep fields, the optical or UV morphology of high-redshift galaxy disks have been characterized using a few quantities: concentration (C), asymmetry (A), smoothness (S), second-order-moment (M20), the GINI coefficient (G), and Ellipticity (E). We have applied these parameters across wavelengths and compared them to the HI morphology over the THINGS sample. NGC 3184, an unperturbed disk, and NGC 5194, the canonical 3:1 interaction, serve as examples for quantified morphology. We find that morphology parameters determined in HI are as good or better a tracer of interaction compared to those in any other wavelength, notably in Asymmetry, Gini and M20. This opens the possibility of using them in the parameterization pipeline for SKA precursor catalogues to select interacting or harassed galaxies from their HI morphology. Asymmetry, Gini and M20 may be redefined for use on data-cubes rather than HI column density image.Comment: 6 pages, 3 figures, proceeding of the conference "Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution", June 02 - 05 2009, Groningen, update after small edit

    Kinetics of the reduction of metalloproteins by chromous ion

    Get PDF
    The reduction of Cu(330) in Rhus vernicifera laccase by chromous ion is 30% faster than reduction of Cu(614) at room temperature [pH 4.8, µ = 0.1 (NaCl)], and two parallel first-order paths, attributed to heterogeneity of the protein, are observed at both wavelengths. The reactions of stellacyanin, spinach and French-bean plastocyanins, and cytochrome c with chromous ion under similar conditions are faster than that with laccase by factors of 102 to 104, and are first order in protein concentration. Comparison of rates and activation parameters for the reduction of "blue" copper in laccase, stellacyanin, and the two plastocyanins indicates that reduction of the Cu(614) site in laccase may occur by intramolecular electron transfer from one of the Cu(330) sites. Our value of ΔH (17.4 kcal/mol) for the chromous ion reduction of cytochrome c is consistent with a mechanism in which major conformational changes in the protein must accompany electron transfer

    Quantified HI Morphology VII: star-formation and tidal influence on local dwarf HI morphology

    Get PDF
    Scale-invariant morphology parameters applied to atomic hydrogen maps (HI) of galaxies can be used to quantify the effects of tidal interaction or star-formation on the ISM. Here we apply these parameters, Concentration, Asymmetry, Smoothness, Gini, M20, and the GM parameter, to two public surveys of nearby dwarf galaxies, the VLA-ANGST and LITTLE-THINGS survey, to explore whether tidal interaction or the ongoing or past star-formation is a dominant force shaping the HI disk of these dwarfs. Previously, HI morphological criteria were identified for ongoing spiral-spiral interactions. When we apply these to the Irregular dwarf population, they either select almost all or none of the population. We find that only the Asymmetry-based criteria can be used to identify very isolated dwarfs (i.e., these have a low tidal indication). Otherwise, there is little or no relation between the level of tidal interaction and the HI morphology. We compare the HI morphology to three star-formation rates based on either Halpha, FUV or the resolved stellar population, probing different star-formation time-scales. The HI morphology parameters that trace the inequality of the distribution, the Gini, GM, and M20 parameters, correlate weakly with all these star-formation rates. This is in line with the picture that local physics dominates the ISM appearance and not tidal effects. Finally, we compare the SDSS measures of star-formation and stellar mass to the HI morphological parameters for all four HI surveys. In the two lower-resolution HI surveys (12"), there is no relation between star-formation measures and HI morphology. The morphology of the two high-resolution HI surveys (6"), the Asymmetry, Smoothness, Gini, M20, and GM, do show a link to the total star-formation, but a weak one.Comment: 26 figures, 4 tables, two appendices. Third appendix (HI maps of all galaxies) omitted. Accepted by MNRA

    All NIRspec needs is HST/WFC3 pre-imaging? The use of Milky Way Stars in WFC3 Imaging to Register NIRspec MSA Observations

    Get PDF
    The James Webb Space Telescope (JWST) will be an exquisite new near-infrared observatory with imaging and multi-object spectroscopy through ESA's NIRspec instrument with its unique Micro-Shutter Array (MSA), allowing for slits to be positioned on astronomical targets by opening specific 0.002"-wide micro shutter doors. To ensure proper target acquisition, the on-sky position of the MSA needs to be verified before spectroscopic observations start. An onboard centroiding program registers the position of pre-identified guide stars in a Target Acquisition (TA) image, a short pre-spectroscopy exposure without dispersion (image mode) through the MSA with all shutters open. The outstanding issue is the availability of Galactic stars in the right luminosity range for TA relative to typical high redshift targets. We explore this here using the stars and z∼8z\sim8 candidate galaxies identified in the source extractor catalogs of Brightest of Reionizing Galaxies survey (BoRG[z8]), a pure-parallel program with Hubble Space Telescope Wide-Field Camera 3. We find that (a) a single WFC3 field contains enough Galactic stars to satisfy the NIRspec astrometry requirement (20 milli-arcseconds), provided its and the NIRspec TA's are mlim>24.5m_{lim}>24.5 AB in WFC3 F125W, (b) a single WFC3 image can therefore serve as the pre-image if need be, (c) a WFC3 mosaic and accompanying TA image satisfy the astrometry requirement at ∼23\sim23 AB mag in WFC3 F125W, (d) no specific Galactic latitude requires deeper TA imaging due to a lack of Galactic stars, and (e) a depth of ∼24\sim24 AB mag in WFC3 F125W is needed if a guide star in the same MSA quadrant as a target is required. We take the example of a BoRG identified z∼8z\sim8 candidate galaxy and require a Galactic star within 20" of it. In this case, a depth of 25.5 AB in F125W is required (with ∼\sim97% confidence).Comment: 17 pages, 15 figures, to appear in the Journal of Astronomical Instrumentatio
    • …
    corecore