176 research outputs found
Wheat genotypic variation in dynamic fluxes of WSC components in different stem segments under drought during grain filling
In wheat, stem water soluble carbohydrates (WSC), composed mainly of fructans, are the major carbon sources for grain filling during periods of decreasing photosynthesis or under drought stress after anthesis. Here, in a field drought experiment, WSC levels and associated enzyme activities were followed in different stem segments (peduncle, penultimate internode, lower parts of stem, and sheath) during grain filling. The focus was on two double haploid (DH) lines, DH 307 and DH 338, derived from a Westonia/Kauz cross, two drought-tolerant wheat varieties that follow different drought adaptation strategies during grain filling. The results showed that in irrigated plants, in the period between 20 and 30 days after anthesis (DAA), 70–80% of WSC were fructans. Before and after this period, the fructan proportion varied from 10 to 60%, depending on the location along the stem. Under drought, the fructan proportion changed, depending on genotype, and developmental stages. After anthesis, stem fructans accumulation occurred mainly in the peduncle and penultimate internode until 14 DAA in both DH lines, with clear genotypic variation in subsequent fructan degradation under drought. In DH 307 a significant reduction of fructans with a concomitant increase in fructose levels occurred earlier in the lower parts of the stem and the sheath, as compared to DH 338 or other stem segments in both lines. This was associated with an earlier increase of grain weight and thousand grain weight in DH 307. Spatiotemporal analysis of fructan dynamics and enzymatic activities in fructan metabolism revealed that several types of FEHs are involved in fructan remobilization to the grain under drought
Unravelling the proteomic landscape of extracellular vesicles in prostate cancer by density-based fractionation of urine
Extracellular vesicles (EV) are increasingly being recognized as important vehicles of intercellular communication and promising diagnostic and prognostic biomarkers in cancer. Despite this enormous clinical potential, the plethora of methods to separate EV from biofluids, providing material of highly variable purity, and lacking knowledge regarding methodological repeatability pose a barrier to clinical translation. Urine is considered an ideal proximal fluid for the study of EV in urological cancers due to its direct contact with the urogenital system. We demonstrate that density-based fractionation of urine by bottom-up Optiprep density gradient centrifugation separates EV and soluble proteins with high specificity and repeatability. Mass spectrometry-based proteomic analysis of urinary EV (uEV) in men with benign and malignant prostate disease allowed us to significantly expand the known human uEV proteome with high specificity and identifies a unique biological profile in prostate cancer not uncovered by the analysis of soluble proteins. In addition, profiling the proteome of EV separated from prostate tumour conditioned medium and matched uEV confirms the specificity of the identified uEV proteome for prostate cancer. Finally, a comparative proteomic analysis with uEV from patients with bladder and renal cancer provided additional evidence of the selective enrichment of protein signatures in uEV reflecting their respective cancer tissues of origin. In conclusion, this study identifies hundreds of previously undetected proteins in uEV of prostate cancer patients and provides a powerful toolbox to map uEV content and contaminants ultimately allowing biomarker discovery in urological cancers
Symmetry in temporal logic model checking
Temporal logic model checking involves checking the state-space of a model of a system to determine whether errors can occur in the system. Often this involves checking symmetrically equivalent areas of the state-space. The use of symmetry reduction to increase the efficiency of model checking has inspired a wealth of activity in the area of model checking research. We provide a survey of the associated literature
Stem cell‐derived enteroid cultures as a tool for dissecting host‐parasite interactions in the small intestinal epithelium.
Toxoplasma gondii and Cryptosporidium spp. can cause devastating pathological effects in humans and livestock, and in particular to young or immunocompromised individuals. The current treatment plans for these enteric parasites are limited due to long drug courses, severe side effects, or simply a lack of efficacy. The study of the early interactions between the parasites and the site of infection in the small intestinal epithelium has been thwarted by the lack of accessible, physiologically relevant, and species-specific models. Increasingly, 3D stem cell-derived enteroid models are being refined and developed into sophisticated models of infectious disease. In this review we shall illustrate the use of enteroids to spearhead research into enteric parasitic infections, bridging the gap between cell line cultures and in vivo experiments
- …