351 research outputs found
Non-linear inflationary perturbations
We present a method by which cosmological perturbations can be quantitatively
studied in single and multi-field inflationary models beyond linear
perturbation theory. A non-linear generalization of the gauge-invariant
Sasaki-Mukhanov variables is used in a long-wavelength approximation. These
generalized variables remain invariant under time slicing changes on long
wavelengths. The equations they obey are relatively simple and can be
formulated for a number of time slicing choices. Initial conditions are set
after horizon crossing and the subsequent evolution is fully non-linear. We
briefly discuss how these methods can be implemented numerically in the study
of non-Gaussian signatures from specific inflationary models.Comment: 10 pages, replaced to match JCAP versio
Non-Gaussian perturbations from multi-field inflation
We show how the primordial bispectrum of density perturbations from inflation
may be characterised in terms of manifestly gauge-invariant cosmological
perturbations at second order. The primordial metric perturbation, zeta,
describing the perturbed expansion of uniform-density hypersurfaces on large
scales is related to scalar field perturbations on unperturbed (spatially-flat)
hypersurfaces at first- and second-order. The bispectrum of the metric
perturbation is thus composed of (i) a local contribution due to the
second-order gauge-transformation, and (ii) the instrinsic bispectrum of the
field perturbations on spatially flat hypersurfaces. We generalise previous
results to allow for scale-dependence of the scalar field power spectra and
correlations that can develop between fields on super-Hubble scales.Comment: 11 pages, RevTex; minor changes to text; conclusions unchanged;
version to appear in JCA
Non-Gaussianity in braneworld and tachyon inflation
We calculate the bispectrum of single-field braneworld inflation, triggered
by either an ordinary scalar field or a cosmological tachyon, by means of a
gradient expansion of large-scale non-linear perturbations coupled to
stochastic dynamics. The resulting effect is identical to that for single-field
4D standard inflation, the non-linearity parameter being proportional to the
scalar spectral index in the limit of collapsing momentum. If the slow-roll
approximation is assumed, braneworld and tachyon non-Gaussianities are
subdominant with respect to the post-inflationary contribution. However, bulk
physics may considerably strengthen the non-linear signatures. These features
do not change significantly when considered in a non-commutative framework.Comment: 17 pages; v2: added references and previously skipped details in the
derivation of the result; v3: improved discussio
Scale-invariance in expanding and contracting universes from two-field models
We study cosmological perturbations produced by the most general
two-derivative actions involving two scalar fields, coupled to Einstein
gravity, with an arbitrary field space metric, that admit scaling solutions.
For contracting universes, we show that scale-invariant adiabatic perturbations
can be produced continuously as modes leave the horizon for any equation of
state parameter . The corresponding background solutions are unstable,
which we argue is a universal feature of contracting models that yield
scale-invariant spectra. For expanding universes, we find that nearly
scale-invariant adiabatic perturbation spectra can only be produced for , and that the corresponding scaling solutions are attractors. The
presence of a nontrivial metric on field space is a crucial ingredient in our
results.Comment: 23 pages, oversight in perturbations calculation corrected,
conclusions for expanding models modifie
Kahler Moduli Inflation
We show that under general conditions there is at least one natural
inflationary direction for the Kahler moduli of type IIB flux
compactifications. This requires a Calabi-Yau which has h^{2,1}>h^{1,1}>2 and
for which the structure of the scalar potential is as in the recently found
exponentially large volume compactifications. We also need - although these
conditions may be relaxed - at least one Kahler modulus whose only
non-vanishing triple-intersection is with itself and which appears by itself in
the non-perturbative superpotential. Slow-roll inflation then occurs without a
fine tuning of parameters, evading the eta problem of F-term inflation. In
order to obtain COBE-normalised density perturbations, the stabilised volume of
the Calabi-Yau must be O(10^5-10^7) in string units, and the inflationary scale
M_{infl} ~ 10^{13} GeV. We find a robust model independent prediction for the
spectral index of 1 - 2/N_e = 0.960 - 0.967, depending on the number of
efoldings.Comment: 17 pages, 1 figure; v2. references adde
On the Transverse-Traceless Projection in Lattice Simulations of Gravitational Wave Production
It has recently been pointed out that the usual procedure employed in order
to obtain the transverse-traceless (TT) part of metric perturbations in lattice
simulations was inconsistent with the fact that those fields live in the
lattice and not in the continuum. It was claimed that this could lead to a
larger amplitude and a wrong shape for the gravitational wave (GW) spectra
obtained in numerical simulations of (p)reheating. In order to address this
issue, we have defined a consistent prescription in the lattice for extracting
the TT part of the metric perturbations. We demonstrate explicitly that the GW
spectra obtained with the old continuum-based TT projection only differ
marginally in amplitude and shape with respect to the new lattice-based ones.
We conclude that one can therefore trust the predictions appearing in the
literature on the spectra of GW produced during (p)reheating and similar
scenarios simulated on a lattice.Comment: 22 pages, 8 figures, Submitted to JCA
Observational Signatures and Non-Gaussianities of General Single Field Inflation
We perform a general study of primordial scalar non-Gaussianities in single
field inflationary models in Einstein gravity. We consider models where the
inflaton Lagrangian is an arbitrary function of the scalar field and its first
derivative, and the sound speed is arbitrary. We find that under reasonable
assumptions, the non-Gaussianity is completely determined by 5 parameters. In
special limits of the parameter space, one finds distinctive ``shapes'' of the
non-Gaussianity. In models with a small sound speed, several of these shapes
would become potentially observable in the near future. Different limits of our
formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical
coefficients corrected in Appendix B, discussion on consistency condition
revise
Observational Signatures and Non-Gaussianities of General Single Field Inflation
We perform a general study of primordial scalar non-Gaussianities in single
field inflationary models in Einstein gravity. We consider models where the
inflaton Lagrangian is an arbitrary function of the scalar field and its first
derivative, and the sound speed is arbitrary. We find that under reasonable
assumptions, the non-Gaussianity is completely determined by 5 parameters. In
special limits of the parameter space, one finds distinctive ``shapes'' of the
non-Gaussianity. In models with a small sound speed, several of these shapes
would become potentially observable in the near future. Different limits of our
formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical
coefficients corrected in Appendix B, discussion on consistency condition
revise
AdS and stabilized extra dimensions in multidimensional gravitational models with nonlinear scalar curvature terms 1/R and R^4
We study multidimensional gravitational models with scalar curvature
nonlinearities of the type 1/R and R^4. It is assumed that the corresponding
higher dimensional spacetime manifolds undergo a spontaneous compactification
to manifolds with warped product structure. Special attention is paid to the
stability of the extra-dimensional factor spaces. It is shown that for certain
parameter regions the systems allow for a freezing stabilization of these
spaces. In particular, we find for the 1/R model that configurations with
stabilized extra dimensions do not provide a late-time acceleration (they are
AdS), whereas the solution branch which allows for accelerated expansion (the
dS branch) is incompatible with stabilized factor spaces. In the case of the
R^4 model, we obtain that the stability region in parameter space depends on
the total dimension D=dim(M) of the higher dimensional spacetime M. For D>8 the
stability region consists of a single (absolutely stable) sector which is
shielded from a conformal singularity (and an antigravity sector beyond it) by
a potential barrier of infinite height and width. This sector is smoothly
connected with the stability region of a curvature-linear model. For D<8 an
additional (metastable) sector exists which is separated from the conformal
singularity by a potential barrier of finite height and width so that systems
in this sector are prone to collapse into the conformal singularity. This
second sector is not smoothly connected with the first (absolutely stable) one.
Several limiting cases and the possibility for inflation are discussed for the
R^4 model.Comment: 28 pages, minor cosmetic improvements, Refs. added; to appear in
Class. Quantum Gra
Large Nongaussianity from Nonlocal Inflation
We study the possibility of obtaining large nongaussian signatures in the
Cosmic Microwave Background in a general class of single-field nonlocal
hill-top inflation models. We estimate the nonlinearity parameter f_{NL} which
characterizes nongaussianity in such models and show that large nongaussianity
is possible. For the recently proposed p-adic inflation model we find that
f_{NL} ~ 120 when the string coupling is order unity. We show that large
nongaussianity is also possible in a toy model with an action similar to those
which arise in string field theory.Comment: 27 pages, no figures. Added references and some clarifying remark
- …