6 research outputs found

    The optical module for the NESTOR neutrino telescope

    No full text
    NESTOR is a deep-sea water Cherenkov neutrino detector now under construction for deployment in the Mediterranean off Greece. Its key component is an optical module employing a photomultiplier tube with a 15 in. hemispherical photocathode in a transparent glass pressure housing. Extensive tests have been made on the sensitivity, uniformity, time resolution, noise rates and mechanical properties of the module: several test deployments have been made at sea. © 2002 Elsevier Science B.V. All rights reserved

    The optical module for the NESTOR neutrino telescope

    No full text
    NESTOR is a deep-sea water Cherenkov neutrino detector now under construction for deployment in the Mediterranean off Greece. Its key component is an optical module employing a photomultiplier tube with a 15 in. hemispherical photocathode in a transparent glass pressure housing. Extensive tests have been made on the sensitivity, uniformity, time resolution, noise rates and mechanical properties of the module: several test deployments have been made at sea

    KM3NeT. Conceptual Design Report for a Deep-Sea Research Infrastructure Incorporating a Very Large Volume Neutrino Telescope in the Mediterranean Sea

    No full text
    The scientific case for a neutrino telescope of a cubic kilometre scale is overwhelming. The infra‐structure it requires can easily be shared by a host of other, associated, sciences, making long‐term measurements in the area of oceanography, clima‐tology, geophysics, geotechnics and marine bio‐logical sciences possible. This combination of neu‐trino telescope and multidisciplinary undersea ob‐servatory, KM3NeT, is the subject of this Design Report. It summarises goals for the design and the options for its technical implementation

    KM3NeT: Technical design report.

    No full text
    KM3NeT is a deep‐sea multidisciplinary observatory in the Mediterranean Sea that will provide innovative science opportunities spanning Astroparticle Physics and Earth and Sea Science. This is possible through the synergy created by the use of a common infrastructure allowing for long term continuous operation of a neutrino telescope and marine instrumentation. The present KM3NeT Design Study concludes with this Technical Design Report which develops the ideas put forward in the Conceptual Design Report published in April 2008
    corecore