55 research outputs found

    Resonant two-magnon Raman scattering in antiferromagnetic insulators

    Full text link
    We propose a theory of two-magnon {\it resonant\/} Raman scattering from antiferromagnetic insulators, which contains information both on the magnetism and the carrier properties in the lighly doped phases. We argue that the conventional theory does not work in the resonant regime, in which the energy of the incident photon is close to the gap between the conduction and valence bands. We identify the diagram which gives the dominant contribution to Raman intensity in this regime and show that it can explain the unusual features in the two-magnon profile and in the two-magnon peak intensity dependence on the incoming photon frequency.Comment: 11 pages (REVTeX) + 3 figures in a single postscript file are appended in uuencoded format, preprint TCSUH-94:09

    Theory of a Higher Order Phase Transition: Superconducting Transition in BKBO

    Full text link
    We describe here the properties expected of a higher (with emphasis on the order fourth) order phase transition. The order is identified in the sense first noted by Ehrenfest, namely in terms of the temperature dependence of the ordered state free energy near the phase boundary. We have derived an equation for the phase boundary in terms of the discontinuities in thermodynamic observables, developed a Ginzburg-Landau free energy and studied the thermodynamic and magnetic properties. We also discuss the current status of experiments on Ba0.6K0.4BiO3Ba_{0.6}K_{0.4}BiO_3 and other BiO3BiO_3 based superconductors, the expectations for parameters and examine alternative explanations of the experimental results.Comment: 18 pages, no figure

    Superexchange coupling and spin susceptibility spectral weight in undoped monolayer cuprates

    Full text link
    A systematic inelastic neutron scattering study of the superexchange interaction in three different undoped monolayer cuprates (La_2CuO_4, Nd_2CuO_4 and Pr_2CuO_4) has been performed using conventional triple axis technique. We deduce the in-plane antiferromagnetic (AF) superexchange coupling JJ which actually presents no simple relation versus crystallographic parameters. The absolute spectral weight of the spin susceptibility has been obtained and it is found to be smaller than expected even when quantum corrections of the AF ground state are taken into account.Comment: 13 pages, 1 table, 3 figure

    Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators

    Full text link
    We present results of low-temperature two-magnon resonance Raman excitation profile measurements for single layer Sr_2CuO_2Cl_2 and bilayer YBa_2Cu_3O_{6 + \delta} antiferromagnets over the excitation region from 1.65 to 3.05 eV. These data reveal composite structure of the two-magnon line shape and strong nonmonotic dependence of the scattering intensity on excitation energy. We analyze these data using the triple resonance theory of Chubukov and Frenkel (Phys. Rev. Lett., 74, 3057 (1995)) and deduce information about magnetic interaction and band parameters in these materials.Comment: REVTeX, 4 pages + 2 PostScript (compressed) figure

    Universal Static and Dynamic Properties of the Structural Transition in Pb(Zn1/3Nb2/3)O3

    Full text link
    The relaxors Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_{3} (PZN) and Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_{3} (PMN) have very similar properties based on the dielectric response around the critical temperature TcT_{c} (defined by the structural transition under the application of an electric field). It has been widely believed that these materials are quite different below TcT_{c} with the unit cell of PMN remaining cubic while in PZN the low temperature unit cell is rhombohedral in shape. However, this has been clarified by recent high-energy x-ray studies which have shown that PZN is rhombohedral only in the skin while the shape of the unit cell in the bulk is nearly cubic. In this study we have performed both neutron elastic and inelastic scattering to show that the temperature dependence of both the diffuse and phonon scattering in PZN and PMN is very similar. Both compounds show a nearly identical recovery of the soft optic mode and a broadening of the acoustic mode below TcT_{c}. The diffuse scattering in PZN is suggestive of an onset at the high temperature Burns temperature similar to that in PMN. In contrast to PMN, we observe a broadening of the Bragg peaks in both the longitudinal and transverse directions below TcT_{c}. We reconcile this additional broadening, not observed in PMN, in terms of structural inhomogeneity in PZN. Based on the strong similarities between PMN and PZN, we suggest that both materials belong to the same universality class and discuss the relaxor transition in terms of the three-dimensional Heisenberg model with cubic anisotropy in a random field.Comment: 11 pages, 10 figures. Updated version after helpful referee comment

    Resonant Raman Scattering in Antiferromagnets

    Full text link
    Two-magnon Raman scattering provides important information about electronic correlations in the insulating parent compounds of high-TcT_c materials. Recent experiments have shown a strong dependence of the Raman signal in B1gB_{1g} geometry on the frequency of the incoming photon. We present an analytical and numerical study of the Raman intensity in the resonant regime. It has been previously argued by one of us (A.Ch) and D. Frenkel that the most relevant contribution to the Raman vertex at resonance is given by the triple resonance diagram. We derive an expression for the Raman intensity in which we simultaneously include the enhancement due to the triple resonance and a final state interaction. We compute the two-magnon peak height (TMPH) as a function of incident frequency and find two maxima at ωres(1)2Δ+3J\omega^{(1)}_{res} \approx 2\Delta + 3J and ωres(2)2Δ+8J\omega^{(2)}_{res} \approx 2\Delta + 8J. We argue that the high-frequency maximum is cut only by a quasiparticle damping, while the low-frequency maximum has a finite amplitude even in the absence of damping. We also obtain an evolution of the Raman profile from an asymmetric form around ωres(1)\omega^{(1)}_{res} to a symmetric form around ωres(2)\omega^{(2)}_{res}. We further show that the TMPH depends on the fermionic quasiparticle damping, the next-nearest neighbor hopping term tt^{\prime} and the corrections to the interaction vertex between light and the fermionic current. We discuss our results in the context of recent experiments by Blumberg et al. on Sr2CuO2Cl2Sr_2CuO_2Cl_2 and YBa2Cu3O6.1YBa_2Cu_3O_{6.1} and R\"{u}bhausen et al. on PrBa2Cu3O7PrBa_2Cu_3O_7 and show that the triple resonance theory yields a qualitative and to some extent also quantitative understanding of the experimental data.Comment: 19 pages, RevTeX, 16 figures embedded in the text, ps-file is also available at http://lifshitz.physics.wisc.edu/www/morr/morr_homepage.htm

    Quasiparticle excitation in and around the vortex core of underdoped YBa_2Cu_4O_8 studied by site-selective NMR

    Full text link
    We report a site-selective ^{17}O spin-lattice relaxation rate T_1^{-1} in the vortex state of underdoped YBa_2Cu_4O_8. We found that T_1^{-1} at the planar sites exhibits an unusual nonmonotonic NMR frequency dependence. In the region well outside the vortex core, T_1^{-1} cannot be simply explained by the density of states of the Doppler-shifted quasiparticles in the d-wave superconductor. Based on T_1^{-1} in the vortex core region, we establish strong evidence that the local density of states within the vortex core is strongly reduced.Comment: 5 pages, 3 figure

    Resonant two-magnon Raman scattering in parent compounds of high-Tc_c superconductors.

    Full text link
    We propose a theory of two-magnon Raman scattering from the insulating parent compounds of high-Tc_c superconductors, which contains information not only on magnetism, but also on the electronic properties in these materials. We use spin density wave formalism for the Hubbard model, and study diagrammatically the profile of the two-magnon scattering and its intensity dependence on the incoming photon frequency ωi\omega_i both for ωiU\omega_i \ll U and in the resonant regime, in which the energy of the incident photon is close to the gap between conduction and valence bands. In the nonresonant case, we identify the diagrams which contribute to the conventional Loudon-Fleury Hamiltonian. In the resonant regime, where most of the experiments have been done, we find that the dominant contribution to Raman intensity comes from a different diagram, one which allows for a simultaneous vanishing of all three of its denominators (i.e., a triple resonance). We study this diagram in detail and show that the triple resonance, combined with the spin-density-wave dispersion relation for the carriers, explains the unusual features found in the two-magnon profile and in the two-magnon peak intensity dependence on the incoming photon frequency. In particular, our theory predicts a maximum of the two-magnon peak intensity right at the upper edge of the features in the optical data, which has been one of the key experimental puzzles.Comment: Revtex, 12 postscript figures (uuencoded
    corecore