24 research outputs found

    Location and chemical bond of radionuclides in neutron-irradiated nuclear graphite

    No full text
    The locations and the chemical forms (chemical bonds) of radionuclides in neutron-irradiated nuclear graphite have been determined in order to develop principal strategies for the management of graphitic nuclear waste. Due to the relatively low concentration of radionuclides in neutron-irradiated nuclear graphite (<1 ppm) direct spectroscopic methods are not applicable to investigate chemical structures. Therefore, methods by analogy have been applied. Such methods are investigations of the chemically detectable precursors of radionuclides in neutron-irradiated nuclear graphite and subjection of irradiated graphite to different chemical reactions followed by measurements of the radionuclide-containing reaction products by sensitive radiochemical methods. The paper discusses the applicability of these methods. The radionuclides investigated in this study can be divided into three parts: tritium, radiocarbon and metallic activation and fission products. Tritium can be bound in neutron-irradiated nuclear graphite as strongly adsorbed tritiated water (HTO), in oxygen-containing functional groups (e.g. C–OT) and as hydrocarbons (C–T). Radiocarbon is covalently bound with the graphite structure. The activity can be described by a homogeneously distributed part and a heterogeneously distributed part (enriched on surfaces or in hotspots). Metallic radionuclides can be bound as ions or covalent metal–carbon compounds. The distribution of all these radionuclides is mainly dependent on the distribution of their inactive precursors

    Optimal ion beam, target type and size for accelerator driven systems: Implications to the associated accelerator power

    No full text
    In interactions of different energetic ions with extended targets hydrogen isotopes are the most effective projectiles for the production of spallation neutrons. It is shown that for every target material and incident ion type and energy there is an optimal target size which results in the escape of a maximum number of spallation neutrons from the target. Calculations show that in an ADS, combination of a beam of 1.5 GeV deuteron projectiles and a uranium target results in the highest neutron production rate and therefore highest energy gain. For fast 1.5 GeV d + U-238 ADS with lead or lead-bismuth eutectic moderator, the required ion beam current is only 38% of that for 1 GeV proton projectiles on lead target. It is shown that for a modular ADS with uranium target and output power of 550 MWth, a 1.5 GeV deuteron beam of current 1.8 mA is required, which is easily achievable with today's technology. For an ADS with k(eff)=0.98 and output power of 2.2 GW(th), the required beam currents for (a) 1 GeV p + Pb and (b) 1.5 GeV d + U systems are 18.5 and 7.1 mA, respectively. (C) 2010 Elsevier Ltd. All rights reserved

    Tiutiunnikov, Spatial distribution of thorium fission rate in a fast spallation and fission neutron field: An experimental and Monte Carlo study

    No full text
    a b s t r a c t The Energy plus Transmutation (EpT) set-up of the Joint Institute for Nuclear Research (JINR), Dubna, Russia is composed of a lead spallation target surrounded by a blanket of natural uranium. The resultant neutron spectrum is a combination of spallation and fission spectra, modified by a reflective external layer of polyethylene and an internal absorbing layer of cadmium. The EpT set-up was irradiated with a beam of 4 GeV deuterons from the Nuclotron Accelerator at JINR. The spatial distribution of thorium fission rate within the assembly was determined experimentally, using a fission track detector technique, and compared with Monte Carlo predictions of the MCNPX code. Contributions of neutrons, protons, deuterons, photons and pions to total fission were taken into account. Close agreement between the experimental and calculated results was found
    corecore