13,198 research outputs found
Anomalous low temperature state of CeOs4Sb12: Magnetic field and La-impurity study
Specific heat for single crystalline samples of Ce1-xLaxOs4Sb12 at zero-field
and magnetic fields to 14 T is reported. Our results confirm enhanced value of
the electronic specific heat coefficient in the paramagnetic state. They
provide arguments for the intrinsic origin of the 1.1 K anomaly. This
transition leads to opening of the gap at the Fermi surface. This low
temperature state of CeOs4Sb12 is extremely sensitive to chemical impurities.
2% of La substituted for Ce suppresses the transition and reduces the
electronic specific heat coefficient. The magnetic field response of the
specific heat is also anomalous.Comment: 4 pages, 3 figure
Probing the parameter space of HD 49933: a comparison between global and local methods
We present two independent methods for studying the global stellar parameter
space (mass M, age, initial chemical composition X_0, Z_0) of HD 49933 with
seismic data. Using a local minimization and an MCMC algorithm, we obtain
consistent results for the determination of the stellar properties: M = 1.1 -
1.2 M_solar, Age ~ 3.0 Gyr, Z_0 ~ 0.008. A description of the error ellipses
can be defined using Singular Value Decomposition techniques, and this is
validated by comparing the errors with those from the MCMC method.Comment: to be published in JPC
Could the Ultra Metal-poor Stars be Chemically Peculiar and Not Related to the First Stars?
Chemically peculiar stars define a class of stars that show unusual elemental
abundances due to stellar photospheric effects and not due to natal variations.
In this paper, we compare the elemental abundance patterns of the ultra
metal-poor stars with metallicities [Fe/H] to those of a subclass of
chemically peculiar stars. These include post-AGB stars, RV Tauri variable
stars, and the Lambda Bootis stars, which range in mass, age, binarity, and
evolutionary status, yet can have iron abundance determinations as low as
[Fe/H] . These chemical peculiarities are interpreted as due to the
separation of gas and dust beyond the stellar surface, followed by the
accretion of dust depleted-gas. Contrary to this, the elemental abundances in
the ultra metal-poor stars are thought to represent yields of the most
metal-poor supernova and, therefore, observationally constrain the earliest
stages of chemical evolution in the Universe. The abundance of the elements in
the photospheres of the ultra metal-poor stars appear to be related to the
condensation temperature of that element; if so, then their CNO abundances
suggest true metallicities of [X/H]~ -2 to -4, rather than their present
metallicities of [Fe/H] < -5.Comment: Accepted for ApJ. 17 pages, 10 figure
Abundance Analysis of Planetary Host Stars I. Differential Iron Abundances
We present atmospheric parameters and iron abundances derived from
high-resolution spectra for three samples of dwarf stars: stars which are known
to host close-in giant planets (CGP), stars for which radial velocity data
exclude the presence of a close-in giant planetary companion (no-CGP), as well
as a random sample of dwarfs with a spectral type and magnitude distribution
similar to that of the planetary host stars (control). All stars have been
observed with the same instrument and have been analyzed using the same model
atmospheres, atomic data and equivalent width modeling program. Abundances have
been derived differentially to the Sun, using a solar spectrum obtained with
Callisto as the reflector with the same instrumentation. We find that the iron
abundances of CGP dwarfs are on average by 0.22 dex greater than that of no-CGP
dwarfs. The iron abundance distributions of both the CGP and no-CGP dwarfs are
different than that of the control dwarfs, while the combined iron abundances
have a distribution which is very similar to that of the control dwarfs. All
four samples (CGP, no-CGP, combined, control) have different effective
temperature distributions. We show that metal enrichment occurs only for CGP
dwarfs with temperatures just below solar and approximately 300 K higher than
solar, whereas the abundance difference is insignificant at Teff around 6000 K.Comment: 52 pages (aastex 11pt, preprint style), including 17 figures and 13
tables; accepted for publication in AJ (scheduled for the October 2003 issue
Strong Resonance of Light in a Cantor Set
The propagation of an electromagnetic wave in a one-dimensional fractal
object, the Cantor set, is studied. The transfer matrix of the wave amplitude
is formulated and its renormalization transformation is analyzed. The focus is
on resonant states in the Cantor set. In Cantor sets of higher generations,
some of the resonant states closely approach the real axis of the wave number,
leaving between them a wide region free of resonant states. As a result, wide
regions of nearly total reflection appear with sharp peaks of the transmission
coefficient beside them. It is also revealed that the electromagnetic wave is
strongly enhanced and localized in the cavity of the Cantor set near the
resonant frequency. The enhancement factor of the wave amplitude at the
resonant frequency is approximately , where
is the imaginary part of the corresponding resonant
eigenvalue. For example, a resonant state of the lifetime
ms and of the enhancement factor is
found at the resonant frequency GHz for the Cantor set
of the fourth generation of length L=10cm made of a medium of the dielectric
constant .Comment: 20 pages, 11 figures, to be published in Journal of the Physical
Society of Japa
The challenges and future of trade unionism in Algeria: a lost cause?
Purpose – This paper aims to shed light on the realities of Algerian employee relations and the challenges autonomous trade unionists encounter in their activities, which are normally far removed from the eyes of the international community. Design/methodology/approach – Twelve semi-structured interviews were conducted with Algerian autonomous trade union leaders, union members and non-members. The collected data were analysed using a qualitative approach. Findings – The interview results brought into relief the challenges of Algerian trade unionism with the following four themes: (1) scepticism towards the only government-affiliated trade union in Algeria; (2) the relationship between autonomous unions and the government; (3) strike actions and intimidation/harassment; and (4) views of non-trade unionists and the future of Algerian trade unionism. Research limitations – The sensitivity of the topic and widespread fear limited the number of interviewees and the length of interviews. Social implications – This paper provides recent empirical evidence reflecting the contemporary nature of employee relations in Algeria, and its discussions consider the prerequisites for a more effective protection of workers’ rights in Algeria. Originality/value – This study addresses the lack of examination of trade union activities in north Africa and in Algeria in particular. Whereas studies on employment relations in emerging economies have been conducted mainly at the macro level, this study makes important contributions by providing a first micro-level insight into the realities of trade unionism in Algeria through giving voice to those who struggle daily to protect workers’ rights
Ram pressure stripping and galaxy orbits: The case of the Virgo cluster
We investigate the role of ram pressure stripping in the Virgo cluster using
N-body simulations. Radial orbits within the Virgo cluster's gravitational
potential are modeled and analyzed with respect to ram pressure stripping. The
N-body model consists of 10000 gas cloud complexes which can have inelastic
collisions. Ram pressure is modeled as an additional acceleration on the clouds
located at the surface of the gas distribution in the direction of the galaxy's
motion within the cluster. We made several simulations changing the orbital
parameters in order to recover different stripping scenarios using realistic
temporal ram pressure profiles. We investigate systematically the influence of
the inclination angle between the disk and the orbital plane of the galaxy on
the gas dynamics. We show that ram pressure can lead to a temporary increase of
the central gas surface density. In some cases a considerable part of the total
atomic gas mass (several 10^8 M_solar) can fall back onto the galactic disk
after the stripping event. A quantitative relation between the orbit parameters
and the resulting HI deficiency is derived containing explicitly the
inclination angle between the disk and the orbital plane. The comparison
between existing HI observations and the results of our simulations shows that
the HI deficiency depends strongly on galaxy orbits. It is concluded that the
scenario where ram pressure stripping is responsible for the observed HI
deficiency is consistent with all HI 21cm observations in the Virgo cluster.Comment: 29 pages with 21 figures. Accepted for publication in Ap
Heavy fermion fluid in high magnetic fields: an infrared study of CeRuSb
We report a comprehensive infrared magneto-spectroscopy study of
CeRuSb compound revealing quasiparticles with heavy effective mass
m, with a detailed analysis of optical constants in fields up to 17 T. We
find that the applied magnetic field strongly affects the low energy
excitations in the system. In particular, the magnitude of m 70
m (m is the quasiparticle band mass) at 10 K is suppressed by as much
as 25 % at 17 T. This effect is in quantitative agreement with the mean-field
solution of the periodic Anderson model augmented with a Zeeman term
- …