661 research outputs found

    Revivals and oscillations of the momentum of light in a planar multimode waveguide

    Get PDF
    The evolution of the transverse momentum of monochromatic light entering a multimode planar waveguide at large angle is investigated. We report on oscillations of the momentum caused by the beatings between the adjacent populated modes of the waveguide and their periodic collapses and revivals. A new type of an interferometer based on this effect with fringe spacing as small as 1/9 of a light wavelength is demonstrated experimentally and periods as small as 1/1000 of a light wavelength seem to be feasible

    Heavy fermion and Kondo lattice behavior in the itinerant ferromagnet CeCrGe3

    Full text link
    Physical properties of polycrystalline CeCrGe3_{3} and LaCrGe3_{3} have been investigated by x-ray absorption spectroscopy, magnetic susceptibility χ(T)\chi(T), isothermal magnetization M(H), electrical resistivity ρ(T)\rho(T), specific heat C(TT) and thermoelectric power S(TT) measurements. These compounds are found to crystallize in the hexagonal perovskite structure (space group \textit{P63_{3}/mmc}), as previously reported. The ρ(T)\rho(T), χ(T)\chi(T) and C(TT) data confirm the bulk ferromagnetic ordering of itinerant Cr moments in LaCrGe3_{3} and CeCrGe3_{3} with TCT_{C} = 90 K and 70 K respectively. In addition a weak anomaly is also observed near 3 K in the C(TT) data of CeCrGe3_{3}. The T dependences of ρ\rho and finite values of Sommerfeld coefficient γ\gamma obtained from the specific heat measurements confirm that both the compounds are of metallic character. Further, the TT dependence of ρ\rho of CeCrGe3_{3} reflects a Kondo lattice behavior. An enhanced γ\gamma of 130 mJ/mol\,K2^{2} together with the Kondo lattice behavior inferred from the ρ(T)\rho(T) establish CeCrGe3_{3} as a moderate heavy fermion compound with a quasi-particle mass renormalization factor of \sim 45.Comment: 7 pages, 7 figures. Accepted by Journal of Physics: Condensed Matte

    Coupling a single electron to a Bose-Einstein condensate

    Full text link
    The coupling of electrons to matter is at the heart of our understanding of material properties such as electrical conductivity. One of the most intriguing effects is that electron-phonon coupling can lead to the formation of a Cooper pair out of two repelling electrons, the basis for BCS superconductivity. Here we study the interaction of a single localized electron with a Bose-Einstein condensate (BEC) and show that it can excite phonons and eventually set the whole condensate into a collective oscillation. We find that the coupling is surprisingly strong as compared to ionic impurities due to the more favorable mass ratio. The electron is held in place by a single charged ionic core forming a Rydberg bound state. This Rydberg electron is described by a wavefunction extending to a size comparable to the dimensions of the BEC, namely up to 8 micrometers. In such a state, corresponding to a principal quantum number of n=202, the Rydberg electron is interacting with several tens of thousands of condensed atoms contained within its orbit. We observe surprisingly long lifetimes and finite size effects due to the electron exploring the wings of the BEC. Based on our results we anticipate future experiments on electron wavefunction imaging, investigation of phonon mediated coupling of single electrons, and applications in quantum optics.Comment: 4 pages, 3 figures and supplementary informatio
    corecore