4,536 research outputs found

    Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales

    Get PDF
    Copyright © 2009 Optical Society of America. This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14729 . Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Colouration in butterfly wings is due to the interaction of light with a covering of scales on both wing surfaces. A combination of nanostructure in the scales, which reflect or scatter light, and absorption from chemical pigments in the scales and wing substrate create the final colour appearance. We compared the wing scale morphology of the pierid butterfly Pieris rapae (Small White) to the reflectance spectra from its wings. Its wing scales contain a dense array of pterin pigment beads. A positive correlation between bead-array density and wing reflectance, at wavelengths where the pigment does not absorb, was identified and characterised. We observed, however, that light scatter from these beads does not account for all of the broadband light scatter observed from the wings. The rest of the scale structure plays an important role in achieving high light scatter. Furthermore, combining the underlying scattering and absorption mechanisms within the butterfly scales enabled us to quantify the optical characteristics of the samples using CIELab colour theory

    Neutron Scattering Study of URu2−x_{2-x}Rex_xSi2_2 with xx = 0.10: Driving Order towards Quantum Criticality

    Full text link
    We report inelastic neutron scattering measurements in the hidden order state of URu2−x_{2-x}Rex_xSi2_2 with xx = 0.10. We observe that towards the ferromagnetic quantum critical point induced by the negative chemical pressure of Re-doping, the gapped incommensurate fluctuations are robust and comparable in intensity to the parent material. As the Re doping moves the system toward the quantum critical point, the commensurate spin fluctuations related to hidden order weaken, display a shortened lifetime and slow down. Halfway to the quantum critical point, the hidden order phase survives, albeit weakened, in contrast to its destruction by hydrostatic pressure and by positive chemical pressure from Rh-doping.Comment: 5 pages, 6 figures, 24 reference

    Renormalization group scaling in nonrelativistic QCD

    Get PDF
    We discuss the matching conditions and renormalization group evolution of non-relativistic QCD. A variant of the conventional MS-bar scheme is proposed in which a subtraction velocity nu is used rather than a subtraction scale mu. We derive a novel renormalization group equation in velocity space which can be used to sum logarithms of v in the effective theory. We apply our method to several examples. In particular we show that our formulation correctly reproduces the two-loop anomalous dimension of the heavy quark production current near threshold.Comment: (27 pages, revtex

    Hadronic Spectral Moments in Semileptonic B Decays With a Lepton Energy Cut

    Get PDF
    We compute the first two moments of the final hadronic invariant mass in inclusive semileptonic B decay, in the presence of a cut on the charged lepton energy. These moments may be measured directly by experiments at the Upsilon(4S) using the neutrino reconstruction technique, which requires such a cut. Measurement of these moments will place constraints on the nonperturbative parameters \bar\Lambda and \lambda_1, which are relevant for extracting the quark masses m_b and m_c, as well as the CKM angle V_cb. We include terms of order \alpha_s^2\beta_0 and 1/m_b^3 in the operator product expansion, and use the latter to estimate the theoretical uncertainty in the extraction of \bar\Lambda and \lambda_1.Comment: 13 pages, 5 figures, REVTe
    • …
    corecore