1,968 research outputs found

    Expectation-driven interaction: a model based on Luhmann's contingency approach

    Full text link
    We introduce an agent-based model of interaction, drawing on the contingency approach from Luhmann's theory of social systems. The agent interactions are defined by the exchange of distinct messages. Message selection is based on the history of the interaction and developed within the confines of the problem of double contingency. We examine interaction strategies in the light of the message-exchange description using analytical and computational methods.Comment: 37 pages, 16 Figures, to appear in Journal of Artificial Societies and Social Simulation

    Directional cell movements downstream of Gbx2 and Otx2 control the assembly of sensory placodes

    Get PDF
    Cranial placodes contribute to sensory structures including the inner ear, the lens and olfactory epithelium and the neurons of the cranial sensory ganglia. At neurula stages, placode precursors are interspersed in the ectoderm surrounding the anterior neural plate before segregating into distinct placodes by as yet unknown mechanisms. Here, we perform live imaging to follow placode progenitors as they aggregate to form the lens and otic placodes. We find that while placode progenitors move with the same speed as their non-placodal neighbours, they exhibit increased persistence and directionality and these properties are required to assemble morphological placodes. Furthermore, we demonstrate that these factors are components of the transcriptional networks that coordinate placode cell behaviour including their directional movements. Together with previous work, our results support a dual role for Otx and Gbx transcription factors in both the early patterning of the neural plate border and the later segregation of its derivatives into distinct placodes

    Einfluss von lebenden Mulchen auf die Begleitflora und die Weizenerträge unter Bedingungen des Ökolandbau

    Get PDF
    For the success of no-tillage in organic farming, new tools have to be developed to control weeds. One possible strategy could be sowing the main crop into an earlier established living mulch of easily controllable cover crops. Field trials were carried out in the Swiss midlands to investigate the impact of different legume cover crops on weed populations and grain yield of directly drilled winter wheat (Triticum aestivum L.) in a living mulch system. In general, weed suppressing effect was best with highly productive legumes. A significant reduction of the weed density of dicotyle, monocotyle, and spring germinating species was observed. Though, effective weed suppression resulted also in strong competition with the winter wheat. In order to improve the practicability of such systems, seeding technique of the main crop and living mulch management should be investigated

    No-Tillage in Europe - State of the Art: Constraints and Perspectives

    Get PDF
    No-tillage in Europe contains a review of developments over the last three decades beginning in the late 1960s. Reasons for attempts to introduce this soil conserving production method are outlined and obstacles affecting the uptake of no-tillage throughout Europe are identified. Updated data are provided for the uptake of both conservation tillage and no-tillage in the member countries of the European Conservation Agriculture Federation. Further explanations for the low uptake of no-tillage and even conservation tillage when compared to other regions in the world are explored. The specificity of European conditions whether natural, human or political are used to provide arguments against the successful adoption of no-tillage in Europe. However, increased awareness of farmers, politicians and society as a whole that soils are a non-renewable resource are leading to gradual changes in the overall approach to soil conservation. The implementation of a European Soil Framework Directive is considered to be an important step towards the recognition that conservation tillage and no-tillage is both an economical and ecological sustainable method for crop production. It is anticipated that this will promote the concept of Conservation Agriculture and increase adoption levels throughout Europe

    Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman

    Get PDF
    Tectonically exposed mantle peridotite in the Oman Ophiolite is variably serpentinized and carbonated. Networks of young carbonate veins are prevalent in highly serpentinized peridotite, particularly near low-temperature alkaline springs emanating from the peridotite. An unusual feature in some samples is the coexistence of serpentine and quartz, which is not commonly observed in serpentinites. This assemblage is unstable with respect to serpentine + talc or talc + quartz under most conditions. Serpentine in the carbonated serpentinites in this study is more iron rich than in most serpentinites reported in previous studies, and samples with co-existing quartz contain the most iron-rich serpentines. Calculations of thermodynamic equilibria in the MgO–SiO2–H2O–CO2 system suggest that serpentine + quartz may be a stable assemblage at low temperatures (e.g., <~15–50 °C) and is stabilized to higher temperatures by preferential cation substitutions in serpentine over talc. Based on these calculations, serpentine + quartz assemblages could result from serpentinization at near-surface temperatures. Clumped isotope thermometry of carbonate veins yields temperatures within error of the observed temperatures in Oman groundwater for all samples analyzed, while the δ^18O of water calculated to be in equilibrium with carbonate precipitated at those temperatures is within error of the observed isotopic composition of Oman groundwater for the majority of samples analyzed. As groundwater geochemistry suggests that carbonate precipitation and serpentinization occur concomitantly, this indicates that both hydration and carbonation of peridotite are able to produce extensive alteration at the relatively low temperatures of the near-surface weathering environment

    Resource use during systematic review production varies widely: a scoping review

    Get PDF
    Objective: We aimed to map the resource use during systematic review (SR) production and reasons why steps of the SR production are resource intensive to discover where the largest gain in improving efficiency might be possible. Study design and setting: We conducted a scoping review. An information specialist searched multiple databases (e.g., Ovid MEDLINE, Scopus) and implemented citation-based and grey literature searching. We employed dual and independent screenings of records at the title/abstract and full-text levels and data extraction. Results: We included 34 studies. Thirty-two reported on the resource use—mostly time; four described reasons why steps of the review process are resource intensive. Study selection, data extraction, and critical appraisal seem to be very resource intensive, while protocol development, literature search, or study retrieval take less time. Project management and administration required a large proportion of SR production time. Lack of experience, domain knowledge, use of collaborative and SR-tailored software, and good communication and management can be reasons why SR steps are resource intensive. Conclusion: Resource use during SR production varies widely. Areas with the largest resource use are administration and project management, study selection, data extraction, and critical appraisal of studies.European Commission CA17117Danube University Krem

    Expansion of a colonial ascidian following consecutive mass coral bleaching at Lizard Island, Australia

    Get PDF
    Mass coral bleaching is challenging today's coral reefs. However, our understanding of dynamics in benthic space holders, following such disturbances, is limited. To address this, we quantified successional dynamics of the ascidian, Didemnum cf. molle using a series of temporally and spatially matched photoquadrats across both the 2016 and 2017 mass coral bleaching events on the Great Barrier Reef. Unlike corals, D. cf. molle appeared to flourish in the warm temperatures and rapidly expanded. Indeed, colony density increased nearly 6-fold over two years with one quadrat experiencing an increase of over 1000 ind. m⁻². However, this increase did not simply track the increase in space due to coral mortality, but may have benefitted from reduced predation or increased nutrient availability following mass coral mortality. This study highlights the potential for D. cf molle to expand under bleaching conditions and to become a more prominent component of future reef configurations

    A 3D perspective on sediment accumulation in algal turfs: implications of coral reef flattening

    Get PDF
    Globally, coral reefs are being transformed by a suite of stressors, the foremost being climate change. Increasingly, it is expected that these reconfigured reef systems will emerge with lower-complexity and will be dominated by algal turfs. Understanding this new operating space is vital if we are to maintain the services, such as fishable biomass production, that reefs provide. However, the functionality of these systems appears to depend on the nature of the algal turfs themselves, which is in-turn, intimately linked to the sediments they contain. As reefs are losing complexity, we need to understand if, and to what extent, algal turf condition and complex reef structure are connected. To address this issue we took advantage of recent developments in 3D structure-from-motion technology to examine how complexity metrics (elevation and surface angle) related to the nature of algal turfs on a heavily climate-impacted coral reef. This represents a novel application of this technology in the context of coral reef ecosystems. We found that as both elevation and surface angle decreased, the nutritional value of the epilithic algal matrix also decreased while sediment accumulation increased. Furthermore, we showed that elevated surfaces were characterized by far shorter algal turfs, and are potentially herbivory hotspots, offering fertile grounds for further exploration of herbivory dynamics at sub-metre spatial scales. Synthesis. This study yields new insights into the operating-space of future reefs, and suggests that as reefs flatten, sediment accumulation is likely to increase even if sediment inputs remain unchanged, altering algal turfs fundamentally. Maintaining key services provided by climate-transformed, low-complexity algal turf-dominated reefs of the future, will depend on managing the complex interactions between herbivory, sediments, algal turfs and reef structural complexity

    Young fishes persist despite coral loss on the Great Barrier Reef

    Get PDF
    Unprecedented global bleaching events have led to extensive loss of corals. This is expected to lead to extensive losses of obligate coral-dependent fishes. Here, we use a novel, spatially-matched census approach to examine the nature of fish-coral dependency across two mass coral bleaching events. Despite a >40% loss of coral cover, and the ecological extinction of functionally important habitat-providing Acropora corals, we show that populations of obligate coral-dependent fishes, including Pomacentrus moluccensis, persisted and – critically – recruitment was maintained. Fishes used a wide range of alternate reef habitats, including other coral genera and dead coral substrata. Labile habitat associations of 'obligate' coral-dependent fishes suggest that recruitment may be sustained on future reefs that lack Acropora, following devastating climatic disturbances. This persistence without Acropora corals offers grounds for cautious optimism; for coral-dwelling fishes, corals may be a preferred habitat, not an obligate requirement

    Spatial mismatch in fish and coral loss following 2016 mass coral bleaching

    Get PDF
    Record-breaking temperatures between 2015 and 2016 led to unprecedented pan-tropical bleaching of scleractinian corals. On the Great Barrier Reef (GBR), the effects were most pronounced in the remote, northern region, where over 90% of reefs exhibited bleaching. Mass bleaching that results in widespread coral mortality represents a major disturbance event for reef organisms, including reef fishes. Using 133 replicate 1 m(2) quadrats, we quantified short-term changes in coral communities and spatially associated reef fish assemblages, at Lizard Island, Australia, in response to the 2016 mass bleaching event. Quadrats were spatially matched, permitting repeated sampling of fish and corals in the same areas: before, during and 6 months after mass bleaching. As expected, we documented a significant decrease in live coral cover. Subsequent decreases in fish abundance were primarily driven by coral-associated damselfishes. However, these losses, were relatively minor (37% decrease), especially compared to the magnitude of Acropora loss (>95% relative decrease). Furthermore, at a local, 1 m(2) scale, we documented a strong spatial mismatch between fish and coral loss. Post-bleaching fish losses were not highest in quadrats that experienced the greatest loss of live coral. Nor were fish losses associated with a proliferation of cyanobacteria. Several sites did, however, exhibit increases in fish abundance suggesting substantial spatial movements. These results challenge common assumptions and emphasize the need for caution when ascribing causality to observed patterns of fish loss at larger spatial scales. Our results highlight the potential for short-term resilience to climate change, in fishes, through local migration and habitat plasticity. (C) 2018 Elsevier B.V. All rights reserved
    corecore