2,153 research outputs found

    Top-Down Fragmentation of a Warm Dark Matter Filament

    Get PDF
    We present the first high-resolution n-body simulations of the fragmentation of dark matter filaments. Such fragmentation occurs in top-down scenarios of structure formation, when the dark matter is warm instead of cold. In a previous paper (Knebe et al. 2002, hereafter Paper I), we showed that WDM differs from the standard Cold Dark Matter (CDM) mainly in the formation history and large-scale distribution of low-mass haloes, which form later and tend to be more clustered in WDM than in CDM universes, tracing more closely the filamentary structures of the cosmic web. Therefore, we focus our computational effort in this paper on one particular filament extracted from a WDM cosmological simulation and compare in detail its evolution to that of the same CDM filament. We find that the mass distribution of the halos forming via fragmentation within the filament is broadly peaked around a Jeans mass of a few 10^9 Msun, corresponding to a gravitational instability of smooth regions with an overdensity contrast around 10 at these redshifts. Our results confirm that WDM filaments fragment and form gravitationally bound haloes in a top-down fashion, whereas CDM filaments are built bottom-up, thus demonstrating the impact of the nature of the dark matter on dwarf galaxy properties.Comment: 7 pages, 7 figures, replaced with MNRAS accepted version (minor revisions

    Hybrid Inflation Exit through Tunneling

    Full text link
    For hybrid inflationary potentials, we derive the tunneling rate from field configurations along the flat direction towards the waterfall regime. This process competes with the classically rolling evolution of the scalar fields and needs to be strongly subdominant for phenomenologically viable models. Tunneling may exclude models with a mass scale below 10^12 GeV, but can be suppressed by small values of the coupling constants. We find that tunneling is negligible for those models, which do not require fine tuning in order to cancel radiative corrections, in particular for GUT-scale SUSY inflation. In contrast, electroweak scale hybrid inflation is not viable, unless the inflaton-waterfall field coupling is smaller than approximately 10^-11.Comment: 17 pages, 2 figure

    Non-monotonic orbital velocity profiles around rapidly rotating Kerr-(anti-)de Sitter black holes

    Full text link
    It has been recently demonstrated that the orbital velocity profile around Kerr black holes in the equatorial plane as observed in the locally non-rotating frame exhibits a non-monotonic radial behaviour. We show here that this unexpected minimum-maximum feature of the orbital velocity remains if the Kerr vacuum is generalized to the Kerr-de Sitter or Kerr-anti-de Sitter metric. This is a new general relativity effect in Kerr spacetimes with non-vanishing cosmological constant. Assuming that the profile of the orbital velocity is known, this effect constrains the spacetime parameters.Comment: 9 pages, 4 figures, accepted for Class. Quant. Gra

    Chain Inflation in the Landscape: "Bubble Bubble Toil and Trouble"

    Full text link
    In the model of Chain Inflation, a sequential chain of coupled scalar fields drives inflation. We consider a multidimensional potential with a large number of bowls, or local minima, separated by energy barriers: inflation takes place as the system tunnels from the highest energy bowl to another bowl of lower energy, and so on until it reaches the zero energy ground state. Such a scenario can be motivated by the many vacua in the stringy landscape, and our model can apply to other multidimensional potentials. The ''graceful exit'' problem of Old Inflation is resolved since reheating is easily achieved at each stage. Coupling between the fields is crucial to the scenario. The model is quite generic and succeeds for natural couplings and parameters. Chain inflation succeeds for a wide variety of energy scales -- for potentials ranging from 10MeV scale inflation to 101610^{16} GeV scale inflation.Comment: 31 pages, 3 figures, one reference adde

    Signals of Inflation in a Friendly String Landscape

    Full text link
    Following Freivogel {\it et al} we consider inflation in a predictive (or `friendly') region of the landscape of string vacua, as modeled by Arkani-Hamed, Dimopoulos and Kachru. In such a region the dimensionful coefficients of super-renormalizable operators unprotected by symmetries, such as the vacuum energy and scalar mass-squareds are freely scanned over, and the objects of study are anthropically or `environmentally' conditioned probability distributions for observables. In this context we study the statistical predictions of (inverted) hybrid inflation models, where the properties of the inflaton are probabilistically distributed. We derive the resulting distributions of observables, including the deviation from flatness 1Ω|1-\Omega|, the spectral index of scalar cosmological perturbations nsn_s (and its scale dependence dns/dlogkdn_s/d\log k), and the ratio of tensor to scalar perturbations rr. The environmental bound on the curvature implies a solution to the η\eta-problem of inflation with the predicted distribution of (1ns)(1-n_s) indicating values close to current observations. We find a relatively low probability (<3<3%) of `just-so' inflation with measurable deviations from flatness. Intermediate scales of inflation are preferred in these models.Comment: 20 pages, 11 figure

    Anisotropy of the Cosmic Neutrino Background

    Get PDF
    The cosmic neutrino background (CNB) consists of low-energy relic neutrinos which decoupled from the cosmological fluid at a redshift z ~ 10^{10}. Despite being the second-most abundant particles in the universe, direct observation remains a distant challenge. Based on the measured neutrino mass differences, one species of neutrinos may still be relativistic with a thermal distribution characterized by the temperature T ~ 1.9K. We show that the temperature distribution on the sky is anisotropic, much like the photon background, experiencing Sachs-Wolfe and integrated Sachs-Wolfe effects.Comment: 5 pages, 2 figures / updated references, discussion of earlier wor

    The optimal phase of the generalised Poincare dodecahedral space hypothesis implied by the spatial cross-correlation function of the WMAP sky maps

    Full text link
    Several studies have proposed that the shape of the Universe may be a Poincare dodecahedral space (PDS) rather than an infinite, simply connected, flat space. Both models assume a close to flat FLRW metric of about 30% matter density. We study two predictions of the PDS model. (i) For the correct model, the spatial two-point cross-correlation function, \ximc, of temperature fluctuations in the covering space, where the two points in any pair are on different copies of the surface of last scattering (SLS), should be of a similar order of magnitude to the auto-correlation function, \xisc, on a single copy of the SLS. (ii) The optimal orientation and identified circle radius for a "generalised" PDS model of arbitrary twist ϕ\phi, found by maximising \ximc relative to \xisc in the WMAP maps, should yield ϕ{±36deg}\phi \in \{\pm 36\deg\}. We optimise the cross-correlation at scales < 4.0 h^-1 Gpc using a Markov chain Monte Carlo (MCMC) method over orientation, circle size and ϕ\phi. Both predictions were satisfied: (i) an optimal "generalised" PDS solution was found, with a strong cross-correlation between points which would be distant and only weakly correlated according to the simply connected hypothesis, for two different foreground-reduced versions of the WMAP 3-year all-sky map, both with and without the kp2 Galaxy mask: the face centres are (l,b)i=1,6(184d,62d),(305d,44d),(46d,49d),(117d,20d),(176d,4d),(240d,13d)towithin 2d,andtheirantipodes;(ii)thissolutionhastwistϕ=(+39±2.5)d,inagreementwiththePDSmodel.Thechanceofthisoccurringinthesimplyconnectedmodel,assumingauniformdistribution(l,b)_{i=1,6}\approx (184d, 62d), (305d, 44d), (46d, 49d), (117d, 20d), (176d, -4d), (240d, 13d) to within ~2d, and their antipodes; (ii) this solution has twist \phi= (+39 \pm 2.5)d, in agreement with the PDS model. The chance of this occurring in the simply connected model, assuming a uniform distribution \phi \in [0,2\pi]$, is about 6-9%.Comment: 20 pages, 22 figures, accepted in Astronomy & Astrophysics, software available at http://adjani.astro.umk.pl/GPLdownload/dodec/ and MCMCs at http://adjani.astro.umk.pl/GPLdownload/MCM

    Gravitational Lens Statistics for Generalized NFW Profiles: Parameter Degeneracy and Implications for Self-Interacting Cold Dark Matter

    Full text link
    Strong lensing is a powerful probe of the distribution of matter in the cores of clusters of galaxies. Recent studies suggest that the cold dark matter model predicts cores that are denser than those observed in galaxies, groups and clusters. One possible resolution of the discrepancy is that the dark matter has strong interactions (SIDM), which leads to lower central densities. A generalized form of the Navarro, Frenk and White profile (Zhao profile) may be used to describe these halos. In this paper we examine gravitational lensing statistics for this class of model. The optical depth to multiple imaging is a very sensitive function of the profile parameters in the range of interest for SIDM halos around clusters of galaxies. Less concentrated profiles, which result from larger self-interaction cross-sections, can produce many fewer lensed pairs. Lensing statistics provide a powerful test for SIDM. More realistic and observationally oriented calculations remain to be done, however larger self-interaction cross-sections may well be ruled out by the very existence of strong lenses on galaxy cluster scales. The inclusion of centrally dominant cluster galaxies should boost the cross-section to multiple imaging. However our preliminary calculations suggest that the additional multiple imaging rate is small with respect to the differences in multiple imaging rate for different halo profiles. In future statistical studies, it will be important to properly account for the scatter among halo profiles since the optical depth to multiple imaging is dominated by the most concentrated members of a cluster population.Comment: 58 pages, 14 figures. To be published in ApJ. Revised version includes discussion of magnification bias and the effect of a centrally dominant galax

    Primordial Black Holes as Dark Matter: The Power Spectrum and Evaporation of Early Structures

    Get PDF
    We consider the possibility that massive primordial black holes are the dominant form of dark matter. Black hole formation generates entropy fluctuations that adds a Poisson noise to the matter power spectrum. We use Lyman-alpha forest observations to constrain this Poisson term in matter power spectrum, then we constrain the mass of black holes to be less than few times 10^4 solar mass. We also find that structures with less than ~ 10^3 primordial black holes evaporate by now.Comment: Submitted to ApJL, 4 pages, 3 figure
    corecore