3,588 research outputs found

    A glimpse of Cre-mediated controversies in epicardial signalling

    Get PDF

    Intrinsic Spin Hall Effect in the Two Dimensional Hole Gas

    Full text link
    We show that two types of spin-orbit coupling in the 2 dimensional hole gas (2DHG), with and without inversion symmetry breaking, contribute to the intrinsic spin Hall effect\cite{murakami2003,sinova2003}. Furthermore, the vertex correction due to impurity scattering vanishes in both cases, in sharp contrast to the case of usual Rashba coupling in the electron band. Recently, the spin Hall effect in a hole doped GaAsGaAs semiconductor has been observed experimentally by Wunderlich \emph{et al}\cite{wunderlich2004}. From the fact that the life time broadening is smaller than the spin splitting, and the fact impurity vertex corrections vanish in this system, we argue that the observed spin Hall effect should be in the intrinsic regime.Comment: Minor typos fixed, one reference adde

    Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

    Full text link
    We show that the Quantum Spin Hall Effect, a state of matter with topological properties distinct from conventional insulators, can be realized in HgTe/CdTe semiconductor quantum wells. By varying the thickness of the quantum well, the electronic state changes from a normal to an "inverted" type at a critical thickness dcd_c. We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss the methods for experimental detection of the QSH effect.Comment: 22 pages. Submitted to Science for publication on Aug 14, 200

    Antiproton-Proton Channels in J/psi Decays

    Full text link
    The recent measurements by the BES Collaboration of J/psi decays into a photon and a proton-antiproton pair indicate a strong enhancement at the proton-antiproton threshold not observed in the decays into a neutral pion and a proton-antiproton pair. Is this enhancement due to a proton-antiproton quasi-bound state or a baryonium? A natural explanation follows from a traditional model of proton-antiproton interactions based on G-parity transformation. The observed proton-antiproton structure is due to a strong attraction in the 1S0 state, and possibly to a near-threshold quasi-bound state in the 11S0 wave.Comment: 6 pages, 5 figures. The antiproton-proton pair being in isospin one in the J/Psi decay into neutral pion-antiproton-proton, the antiproton-proton 1P1 and 3S1 waves have been replaced by the 31P1 and 33S1 ones and Figs. 1 and 2 have been replaced accordingly. Conclusions are unchanged. Most of the content of the paper is published in Phys. Rev. C72, 011001 (2005

    Equivalent topological invariants of topological insulators

    Full text link
    A time-reversal invariant topological insulator can be generally defined by the effective topological field theory with a quantized \theta coefficient, which can only take values of 0 or \pi. This theory is generally valid for an arbitrarily interacting system and the quantization of the \theta invariant can be directly measured experimentally. Reduced to the case of a non-interacting system, the \theta invariant can be expressed as an integral over the entire three dimensional Brillouin zone. Alternatively, non-interacting insulators can be classified by topological invariants defined over discrete time-reversal invariant momenta. In this paper, we show the complete equivalence between the integral and the discrete invariants of the topological insulator.Comment: Published version. Typos correcte
    • …
    corecore