23 research outputs found
Rapid dissipation of magnetic fields due to Hall current
We propose a mechanism for the fast dissipation of magnetic fields which is
effective in a stratified medium where ion motions can be neglected. In such a
medium, the field is frozen into the electrons and Hall currents prevail.
Although Hall currents conserve magnetic energy, in the presence of density
gradients, they are able to create current sheets which can be the sites for
efficient dissipation of magnetic fields. We recover the frequency,
, for Hall oscillations modified by the presence of density
gradients. We show that these oscillations can lead to the exchange of energy
between different components of the field. We calculate the time evolution and
show that magnetic fields can dissipate on a timescale of order
. This mechanism can play an important role for magnetic
dissipation in systems with very steep density gradients where the ions are
static such as those found in the solid crust of neutron stars.Comment: 9 pages, changed fig.
The Interstellar Environment of our Galaxy
We review the current knowledge and understanding of the interstellar medium
of our galaxy. We first present each of the three basic constituents - ordinary
matter, cosmic rays, and magnetic fields - of the interstellar medium, laying
emphasis on their physical and chemical properties inferred from a broad range
of observations. We then position the different interstellar constituents, both
with respect to each other and with respect to stars, within the general
galactic ecosystem.Comment: 39 pages, 12 figures (including 3 figures in 2 parts
Induced pseudoscalar coupling of the proton weak interaction
The induced pseudoscalar coupling is the least well known of the weak
coupling constants of the proton's charged--current interaction. Its size is
dictated by chiral symmetry arguments, and its measurement represents an
important test of quantum chromodynamics at low energies. During the past
decade a large body of new data relevant to the coupling has been
accumulated. This data includes measurements of radiative and non radiative
muon capture on targets ranging from hydrogen and few--nucleon systems to
complex nuclei. Herein the authors review the theoretical underpinnings of
, the experimental studies of , and the procedures and uncertainties
in extracting the coupling from data. Current puzzles are highlighted and
future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic
Ramified Coverings Of S² With One Degenerate Branching Point And Enumeration Of Edge-Ordered Graphs
In this short note we extend the results of Lyashko, Looijenga, and Arnold on the number of nonequivalent rational functions on the sphere with 1 or 2 poles and simple finite branching points to several other cases. In particular, we calculate the number of meromorphic functions on the torus with the same properties