5,477 research outputs found

    Precise Electroweak Measurements at the Z0 Pole

    Full text link
    Over the last decade, precise LEP and SLC measurements of electroweak coupling parameters at the Z0 pole have lead to tests of the Standard Model to unprecedented precision. This report presents a comprehensive review of these studies, including a review of relevant Z0 pole physics issues, facilities, instrumentation, and the measurements made. Global fits for the Higgs Boson mass and Z0-b coupling parameters are also presented.Comment: LaTex, 17 pages, 9 Postscript figures, uses ws-p8-50x6-00a.cls and epsfig.sty. Submitted to the Proceedings of the 1999 Conference on Physics in Collision, Ann Arbor, Michigan, June 24-26, 199

    Numerical simulation of the turbulent convective buoyant flow of sodium over a backward- facing step

    Get PDF
    A forced convective and a buoyancy-aided turbulent liquid sodium flow over a backward-facing step with a constant heat flux applied on the indented wall is simulated. Linear eddy viscosity models are used for the Reynolds stresses. Turbulent heat fluxes are modelled with a single gradient diffusion hypotheses with two different approaches to evaluate the turbulent Prandtl number. Moreover, the inuence of turbulence on heat transfer to sodium is also assessed through simulations with zero turbulent thermal diffusivity. The results are compared with DNS data from literature. The velocity and turbulent kinetic energy profiles predicted by all models are in good agreement with the DNS data. The local Nusselt number trend is qualitatively well captured, however, its magnitude is underestimated by all models for the mixed convection case. For forced convection, the heat transfer is overestimated by all heat flux models. The simulation with neglected turbulent heat transfer shows the best overall agreement for the forced convection case. For the mixed convection best agreement is obtained using a correlation to locally evaluate the turbulent thermal diffusivity

    Evaluation of the storage of diffuse sources of salinity in the Upper Colorado River Basin

    Get PDF
    OWRT project no. B-121-COL

    Dual-species quantum degeneracy of potassium-40 and rubidium-87 on an atom chip

    Full text link
    In this article we review our recent experiments with a 40K-87Rb mixture. We demonstrate rapid sympathetic cooling of a 40K-87Rb mixture to dual quantum degeneracy on an atom chip. We also provide details on efficient BEC production, species-selective magnetic confinement, and progress toward integration of an optical lattice with an atom chip. The efficiency of our evaporation allows us to reach dual degeneracy after just 6 s of evaporation - more rapidly than in conventional magnetic traps. When optimizing evaporative cooling for efficient evaporation of 87Rb alone we achieve BEC after just 4 s of evaporation and an 8 s total cycle time.Comment: 8 pages, 4 figures. To be published in the Proceedings of the 20th International Conference on Atomic Physics, 2006 (Innsbruck, Austria

    Geomorphology of the middle Mississippi River

    Get PDF
    DBS-SAS-MAS 9.Includes bibliographical references (pages 79-80).Prepared for U.S. Army Engineer Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi under Contract No. DACW39-73-C- 0026 by Engineering Research Center, Colorado State University, Fort Collins, Colorado.January 1974.Sponsored by U.S. Army Engineer District, St. Louis

    Disorder Potentials near Lithographically Fabricated Atom Chips

    Full text link
    We show that previously observed large disorder potentials in magnetic microtraps for neutral atoms are reduced by about two orders of magnitude when using atom chips with lithographically fabricated high quality gold layers. Using one dimensional Bose-Einstein condensates, we probe the remaining magnetic field variations at surface distances down to a few microns. Measurements on a 100 um wide wire imply that residual variations of the current flow result from local properties of the wire.Comment: submitted on September 24th, 200

    Effect of Magnetization Inhomogeneity on Magnetic Microtraps for Atoms

    Get PDF
    We report on the origin of fragmentation of ultracold atoms observed on a permanent magnetic film atom chip. A novel technique is used to characterize small spatial variations of the magnetic field near the film surface using radio frequency spectroscopy of the trapped atoms. Direct observations indicate the fragmentation is due to a corrugation of the magnetic potential caused by long range inhomogeneity in the film magnetization. A model which takes into account two-dimensional variations of the film magnetization is consistent with the observations.Comment: 4 pages, 4 figure
    corecore