99 research outputs found
Quantum information processing with trapped ions
Experiments directed towards the development of a quantum computer based on
trapped atomic ions are described briefly. We discuss the implementation of
single qubit operations and gates between qubits. A geometric phase gate
between two ion qubits is described. Limitations of the trapped-ion method such
as those caused by Stark shifts and spontaneous emission are addressed.
Finally, we describe a strategy to realize a large-scale device.Comment: Article submitted by D. J. Wineland ([email protected])
for proceeding of the Discussion Meeting on Practical Realisations of Quantum
Information Processing, held at the Royal Society, Nov. 13,14, 200
Active laser frequency stabilization using neutral praseodymium (Pr)
We present a new possibility for the active frequency stabilization of a
laser using transitions in neutral praseodymium. Because of its five outer
electrons, this element shows a high density of energy levels leading to an
extremely line-rich excitation spectrum with more than 25000 known spectral
lines ranging from the UV to the infrared. We demonstrate the active frequency
stabilization of a diode laser on several praseodymium lines between 1105 and
1123 nm. The excitation signals were recorded in a hollow cathode lamp and
observed via laser-induced fluorescence. These signals are strong enough to
lock the diode laser onto most of the lines by using standard laser locking
techniques. In this way, the frequency drifts of the unlocked laser of more
than 30 MHz/h were eliminated and the laser frequency stabilized to within
1.4(1) MHz for averaging times >0.2 s. Frequency quadrupling the stabilized
diode laser can produce frequency-stable UV-light in the range from 276 to 281
nm. In particular, using a strong hyperfine component of the praseodymium
excitation line E = 16 502.616_7/2 cm^-1 -> E' = 25 442.742_9/2 cm^-1 at lambda
= 1118.5397(4) nm makes it possible - after frequency quadruplication - to
produce laser radiation at lambda/4 = 279.6349(1) nm, which can be used to
excite the D2 line in Mg^+.Comment: 10 pages, 14 figure
Trapped Rydberg Ions: From Spin Chains to Fast Quantum Gates
We study the dynamics of Rydberg ions trapped in a linear Paul trap, and
discuss the properties of ionic Rydberg states in the presence of the static
and time-dependent electric fields constituting the trap. The interactions in a
system of many ions are investigated and coupled equations of the internal
electronic states and the external oscillator modes of a linear ion chain are
derived. We show that strong dipole-dipole interactions among the ions can be
achieved by microwave dressing fields. Using low-angular momentum states with
large quantum defect the internal dynamics can be mapped onto an effective spin
model of a pair of dressed Rydberg states that describes the dynamics of
Rydberg excitations in the ion crystal. We demonstrate that excitation transfer
through the ion chain can be achieved on a nanosecond timescale and discuss the
implementation of a fast two-qubit gate in the ion chain.Comment: 26 pages, 9 figure
Flow cytometry as a rapid analytical tool to determine physiological responses to changing O2 and iron concentration by Magnetospirillum gryphiswaldense strain MSR-1
Magnetotactic bacteria (MTB) are a diverse group of bacteria that synthesise magnetosomes, magnetic membrane-bound nanoparticles that have a variety of diagnostic, clinical and biotechnological applications. We present the development of rapid methods using flow cytometry to characterize several aspects of the physiology of the commonly-used MTB Magnetospirillum gryphiswaldense MSR-1. Flow cytometry is an optical technique that rapidly measures characteristics of individual bacteria within a culture, thereby allowing determination of population heterogeneity and also permitting direct analysis of bacteria. Scatter measurements were used to measure and compare bacterial size, shape and morphology. Membrane permeability and polarization were measured using the dyes propidium iodide and bis-(1,3-dibutylbarbituric acid) trimethine oxonol to determine the viability and âhealthâ of bacteria. Dyes were also used to determine changes in concentration of intracellular free iron and polyhydroxylakanoate (PHA), a bacterial energy storage polymer. These tools were then used to characterize the responses of MTB to different O2 concentrations and iron-sufficient or iron-limited growth. Rapid analysis of MTB physiology will allow development of bioprocesses for the production of magnetosomes, and will increase understanding of this fascinating and useful group of bacteria
- âŠ