2,859 research outputs found
Anomalous mass dependence of radiative quark energy loss in a finite-size quark-gluon plasma
We demonstrate that for a finite-size quark-gluon plasma the induced gluon
radiation from heavy quarks is stronger than that for light quarks when the
gluon formation length becomes comparable with (or exceeds) the size of the
plasma. The effect is due to oscillations of the light-cone wave function for
the in-medium transition. The dead cone model by Dokshitzer and
Kharzeev neglecting quantum finite-size effects is not valid in this regime.
The finite-size effects also enhance the photon emission from heavy quarks.Comment: 8 pages, 3 figure
On the relationship between nonlinear equations integrable by the method of characteristics and equations associated with commuting vector fields
It was shown recently that Frobenius reduction of the matrix fields reveals
interesting relations among the nonlinear Partial Differential Equations (PDEs)
integrable by the Inverse Spectral Transform Method (-integrable PDEs),
linearizable by the
Hoph-Cole substitution (-integrable PDEs) and integrable by the method of
characteristics (-integrable PDEs). However, only two classes of
-integrable PDEs have been involved: soliton equations like Korteweg-de
Vries, Nonlinear Shr\"odinger, Kadomtsev-Petviashvili and Davey-Stewartson
equations, and GL(N,\CC) Self-dual type PDEs, like Yang-Mills equation. In
this paper we consider the simple five-dimensional nonlinear PDE from another
class of -integrable PDEs, namely, scalar nonlinear PDE which is
commutativity condition of the pair of vector fields. We show its origin from
the (1+1)-dimensional hierarchy of -integrable PDEs after certain
composition of Frobenius type and differential reductions imposed on the matrix
fields. Matrix generalization of the above scalar nonlinear PDE will be derived
as well.Comment: 14 pages, 1 figur
Induced photon emission from quark jets in ultrarelativistic heavy-ion collisions
We study the induced photon bremsstrahlung from a fast quark produced in
AA-collisions due to multiple scattering in quark-gluon plasma. For RHIC and
LHC conditions the induced photon spectrum is sharply peaked at photon energy
close to the initial quark energy. In this region the contribution of the
induced radiation to the photon fragmentation function exceeds the ordinary
vacuum radiation. Contrary to previous analyses our results show that at RHIC
and LHC energies the final-state interaction effects in quark-gluon plasma do
not suppress the direct photon production, and even may enhance it at p_{T}
about 5-15 GeV.Comment: 11 pages, 4 figure
Classical Strongly Coupled QGP: VII. Energy Loss
We use linear response analysis and the fluctuation-dissipation theorem to
derive the energy loss of a heavy quark in the SU(2) classical Coulomb plasma
in terms of the monopole and non-static structure factor. The result is
valid for all Coulomb couplings , the ratio of the mean potential
to kinetic energy. We use the Liouville equation in the collisionless limit to
assess the SU(2) non-static structure factor. We find the energy loss to be
strongly dependent on . In the liquid phase with , the
energy loss is mostly metallic and soundless with neither a Cerenkov nor a Mach
cone. Our analytical results compare favorably with the SU(2) molecular
dynamics simulations at large momentum and for heavy quark masses.Comment: 18 pages, 15 figures. v2: added references, changed title, replaced
figures for Fig. 7, corrected typo
Variation of jet quenching from RHIC to LHC and thermal suppression of QCD coupling constant
We perform a joint jet tomographic analysis of the data on the nuclear
modification factor from PHENIX at RHIC and ALICE at LHC. The
computations are performed accounting for radiative and collisional parton
energy loss with running coupling constant. Our results show that the observed
slow variation of from RHIC to LHC indicates that the QCD coupling
constant is suppressed in the quark-gluon plasma produced at LHC.Comment: 9 pages, 2 figure
Statistical Description of Acoustic Turbulence
We develop expressions for the nonlinear wave damping and frequency
correction of a field of random, spatially homogeneous, acoustic waves. The
implications for the nature of the equilibrium spectral energy distribution are
discussedComment: PRE, Submitted. REVTeX, 16 pages, 3 figures (not included) PS Source
of the paper with figures avalable at
http://lvov.weizmann.ac.il/onlinelist.htm
Non-linear effects in hopping conduction of single-crystal La_{2}CuO_{4 + \delta}
The unusual non-linear effects in hopping conduction of single-crystal
La_{2}CuO_{4 + \delta} with excess oxygen has been observed. The resistance is
measured as a function of applied voltage U (10^{-3} V - 25 V) in the
temperature range 5 K 0.1 V) the
conduction of sample investigated corresponds well to Mott's variable-range
hopping (VRH). An unusual conduction behavior is found, however, in low voltage
range (approximately below 0.1 V), where the influence of electric field and
(or) electron heating effect on VRH ought to be neglected. Here we have
observed strong increase in resistance at increasing U at T < 20 K, whereas at
T > 20 K the resistance decreases with increasing U. The magnetoresistance of
the sample below 20 K has been positive at low voltage and negative at high
voltage. The observed non-Ohmic behavior is attributable to inhomogeneity of
the sample, and namely, to the enrichment of sample surface with oxygen during
the course of the heat treatment of the sample in helium and air atmosphere
before measurements. At low enough temperature (below 20 K) the surface layer
with increased oxygen concentration is presumed to consist of disconnected
superconducting regions (with T_{c} about 20 K) in poor-conducting matrix. The
results obtained demonstrate that transport properties of cuprate oxides may be
determined in essential degree by structural or stoichimetric inhomogeneities.
This should be taken into account at evaluation of "quality" of
high-temperature superconductors on the basis of transport properties
measurements.Comment: 12 pages, REVTex, 11 Postscript figures, To be published in Fizika
Nizkikh Temperatur (published by AIP as Low Temperature Physics
Final state interaction effects in scattering
We present a systematic study of the final-state interaction (FSI) effects in
scattering in the CEBAF energy range with particular emphasis on the
phenomenon of the angular anisotropy of the missing momentum distribution. We
find that FSI effects dominate at missing momentum p_m \gsim 1.5 fm.
FSI effects in the excitation of the -wave state are much stronger than in
the excitation of the -wave.Comment: LATEX, 11 pages, 5 figures available from the authors on request,
KFA-IKP(TH)-1994-3
Differential reductions of the Kadomtsev-Petviashvili equation and associated higher dimensional nonlinear PDEs
We represent an algorithm allowing one to construct new classes of partially
integrable multidimensional nonlinear partial differential equations (PDEs)
starting with the special type of solutions to the (1+1)-dimensional hierarchy
of nonlinear PDEs linearizable by the matrix Hopf-Cole substitution (the
B\"urgers hierarchy).
We derive examples of four-dimensional nonlinear matrix PDEs together with
they scalar and three-dimensional reductions. Variants of the
Kadomtsev-Petviashvili type and Korteweg-de Vries type equations are
represented among them. Our algorithm is based on the combination of two
Frobenius type reductions and special differential reduction imposed on the
matrix fields of integrable PDEs. It is shown that the derived four-dimensional
nonlinear PDEs admit arbitrary functions of two variables in their solution
spaces which clarifies the integrability degree of these PDEs.Comment: 20 pages, 1 fugur
- …