29,655 research outputs found
High-Dimensional Stochastic Design Optimization by Adaptive-Sparse Polynomial Dimensional Decomposition
This paper presents a novel adaptive-sparse polynomial dimensional
decomposition (PDD) method for stochastic design optimization of complex
systems. The method entails an adaptive-sparse PDD approximation of a
high-dimensional stochastic response for statistical moment and reliability
analyses; a novel integration of the adaptive-sparse PDD approximation and
score functions for estimating the first-order design sensitivities of the
statistical moments and failure probability; and standard gradient-based
optimization algorithms. New analytical formulae are presented for the design
sensitivities that are simultaneously determined along with the moments or the
failure probability. Numerical results stemming from mathematical functions
indicate that the new method provides more computationally efficient design
solutions than the existing methods. Finally, stochastic shape optimization of
a jet engine bracket with 79 variables was performed, demonstrating the power
of the new method to tackle practical engineering problems.Comment: 18 pages, 2 figures, to appear in Sparse Grids and
Applications--Stuttgart 2014, Lecture Notes in Computational Science and
Engineering 109, edited by J. Garcke and D. Pfl\"{u}ger, Springer
International Publishing, 201
Anisotropic Superconductivity in the Induced Pairing Model
The model of local electron pairs and itinerant fermions coupled via charge
exchange mechanism, which mutually induces superconductivity in both subsystems
is studied for anisotropic pairing symmetry. The phase diagram is presented and
the phase fluctuations effects are analyzed within the Kosterlitz-Thouless
scenario.Comment: 4 pages, 2 figures. Physica B (in press), Proceedings of the
International Conference on Strongly Correlated Electron Systems, Ann Arbor,
Michigan, August 6-10, 200
The {\alpha}-Decay Chains of the Isotopes using Relativistic Mean Field Theory
We study the binding energy, root-mean-square radius and quadrupole
deformation parameter for the synthesized superheavy element Z = 115, within
the formalism of relativistic mean field theory. The calculation is dones for
various isotopes of Z = 115 element, starting from A = 272 to A = 292. A
systematic comparison between the binding energies and experimental data is
made.The calculated binding energies are in good agreement with experimental
result. The results show the prolate deformation for the ground state of these
nuclei. The most stable isotope is found to be 282115 nucleus (N = 167) in the
isotopic chain. We have also studied Q{\alpha} and T{\alpha} for the
{\alpha}-decay chains of 115.Comment: 12 Pages 6 Figures 3 Table
Entropy Driven Dimerization in a One-Dimensional Spin-Orbital Model
We study a new version of the one-dimensional spin-orbital model with spins
S=1 relevant to cubic vanadates. At small Hund's coupling J_H we discover
dimerization in a pure electronic system solely due to a dynamical spin-orbital
coupling. Above a critical value J_H, a uniform ferromagnetic state is
stabilized at zero temperature. More surprisingly, we observe a temperature
driven dimerization of the ferrochain, which occurs due to a large entropy
released by dimer states. This dynamical dimerization seems to be the mechanism
driving the peculiar intermediate phase of YVO_3.Comment: 5 pages, 4 figure
UOLO - automatic object detection and segmentation in biomedical images
We propose UOLO, a novel framework for the simultaneous detection and
segmentation of structures of interest in medical images. UOLO consists of an
object segmentation module which intermediate abstract representations are
processed and used as input for object detection. The resulting system is
optimized simultaneously for detecting a class of objects and segmenting an
optionally different class of structures. UOLO is trained on a set of bounding
boxes enclosing the objects to detect, as well as pixel-wise segmentation
information, when available. A new loss function is devised, taking into
account whether a reference segmentation is accessible for each training image,
in order to suitably backpropagate the error. We validate UOLO on the task of
simultaneous optic disc (OD) detection, fovea detection, and OD segmentation
from retinal images, achieving state-of-the-art performance on public datasets.Comment: Publised on DLMIA 2018. Licensed under the Creative Commons
CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0
Neutrino spin oscillations in gravitational fields
We study neutrino spin oscillations in black hole backgrounds. In the case of
a charged black hole, the maximum frequency of oscillations is a monotonically
increasing function of the charge. For a rotating black hole, the maximum
frequency decreases with increasing the angular momentum. In both cases, the
frequency of spin oscillations decreases as the distance from the black hole
grows. As a phenomenological application of our results, we study simple
bipolar neutrino system which is an interesting example of collective neutrino
oscillations. We show that the precession frequency of the flavor pendulum as a
function of the neutrino number density will be higher for a
charged/non-rotating black hole compared with a neutral/rotating black hole
respectively.Comment: Replaced with the version accepted for publication in Gravitation and
Cosmology, Springer. 10 pages. 4 figure
- …