14 research outputs found
Does practicing hatha yoga satisfy recommendations for intensity of physical activity which improves and maintains health and cardiovascular fitness?
Background: Little is known about the metabolic and heart rate responses to a typical hatha yoga session. The purposes of this study were 1) to determine whether a typical yoga practice using various postures meets the current recommendations for levels of physical activity required to improve and maintain health and cardiovascular fitness; 2) to determine the reliability of metabolic costs of yoga across sessions; 3) to compare the metabolic costs of yoga practice to those of treadmill walking. Methods: In this observational study, 20 intermediate-to-advanced level yoga practitioners, age 31.4 ± 8.3 years, performed an exercise routine inside a human respiratory chamber (indirect calorimeter) while wearing heart rate monitors. The exercise routine consisted of 30 minutes of sitting, 56 minutes of beginner-level hatha yoga administered by video, and 10 minutes of treadmill walking at 3.2 and 4.8 kph each. Measures were mean oxygen consumption (VO2), heart rate (HR), percentage predicted maximal heart rate (%MHR), metabolic equivalents (METs), and energy expenditure (kcal). Seven subjects repeated the protocol so that measurement reliability could be established. Results: Mean values across the entire yoga session for VO2, HR, %MHR, METs, and energy/min were 0.6 L/kg/min; 93.2 beats/min; 49.4%; 2.5; and 3.2 kcal/min; respectively. Results of the ICCs (2,1) for mean values across the entire yoga session for kcal, METs, and %MHR were 0.979 and 0.973, and 0.865, respectively. Conclusion: Metabolic costs of yoga averaged across the entire session represent low levels of physical activity, are similar to walking on a treadmill at 3.2 kph, and do not meet recommendations for levels of physical activity for improving or maintaining health or cardiovascular fitness. Yoga practice incorporating sun salutation postures exceeding the minimum bout of 10 minutes may contribute some portion of sufficiently intense physical activity to improve cardio-respiratory fitness in unfit or sedentary individuals. The measurement of energy expenditure across yoga sessions is highly reliable
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Association between peri-operative angiotensin-converting enzyme inhibitors and angiotensin-2 receptor blockers and acute kidney injury in major elective non-cardiac surgery: a multicentre, prospective cohort study
The peri-operative use of angiotensin-converting enzyme inhibitors or angiotensin-2 receptor blockers is thought to be associated with an increased risk of postoperative acute kidney injury. To reduce this risk, these agents are commonly withheld during the peri-operative period. This study aimed to investigate if withholding angiotensin-converting enzyme inhibitors or angiotensin-2 receptor blockers peri-operatively reduces the risk of acute kidney injury following major non-cardiac surgery. Patients undergoing elective major surgery on the gastrointestinal tract and/or the liver were eligible for inclusion in this prospective study. The primary outcome was the development of acute kidney injury within seven days of operation. Adjusted multi-level models were used to account for centre-level effects and propensity score matching was used to reduce the effects of selection bias between treatment groups. A total of 949 patients were included from 160 centres across the UK and Republic of Ireland. From this population, 573 (60.4%) patients had their angiotensin-converting enzyme inhibitors or angiotensin-2 receptor blockers withheld during the peri-operative period. One hundred and seventy-five (18.4%) patients developed acute kidney injury; there was no difference in the incidence of acute kidney injury between patients who had their angiotensin-converting enzyme inhibitors or angiotensin-2 receptor blockers continued or withheld (107 (18.7%) vs. 68 (18.1%), respectively; p = 0.914). Following propensity matching, withholding angiotensin-converting enzyme inhibitors or angiotensin-2 receptor blockers did not demonstrate a protective effect against the development of postoperative acute kidney injury (OR (95%CI) 0.89 (0.58–1.34); p = 0.567)
Six month mortality in patients with COVID-19 and non-COVID-19 viral pneumonitis managed with veno-venous extracorporeal membrane oxygenation
A significant proportion of patients with COVID-19 develop acute respiratory distress syndrome (ARDS) with high risk of death. The efficacy of veno-venous extracorporeal membrane oxygenation (VV-ECMO) for COVID-19 on longer-term outcomes, unlike in other viral pneumonias, is unknown. In this study, we aimed to compare the 6 month mortality of patients receiving VV-ECMO support for COVID-19 with a historical viral ARDS cohort. Fifty-three consecutive patients with COVID-19 ARDS admitted for VV-ECMO to the Royal Brompton Hospital between March 17, 2020 and May 30, 2020 were identified. Mortality, patient characteristics, complications, and ECMO parameters were then compared to a historical cohort of patients with non-COVID-19 viral pneumonia. At 6 months survival was significantly higher in the COVID-19 than in the non-COVID-19 viral pneumonia cohort (84.9% vs. 66.0%, p = 0.040). Patients with COVID-19 had an increased Murray score (3.50 vs. 3.25, p = 0.005), a decreased burden of organ dysfunction (sequential organ failure score score [8.76 vs. 10.42, p = 0.004]), an increased incidence of pulmonary embolism (69.8% vs. 24.5%, p < 0.001) and in those who survived to decannulation longer ECMO runs (19 vs. 11 days, p = 0.001). Our results suggest that survival in patients supported with EMCO for COVID-19 are at least as good as those treated for non-COVID-19 viral ARDS