61,962 research outputs found

    Remote sensor imagery in urban research - Some potentialities and problem

    Get PDF
    Imaging techniques of urban data collection for development and plannin

    Comments on the nature of the outside boundary layer on a liquid sphere in a steady, uniform stream

    Get PDF
    Nature of outside boundary layer on liquid sphere in steady, uniform strea

    Density profiles and substructure of dark matter halos: converging results at ultra-high numerical resolution

    Get PDF
    Can N-body simulations reliably determine the structural properties of dark matter halos? Focussing on a Virgo-sized galaxy cluster, we increase the resolution of current ``high resolution simulations'' by almost an order of magnitude to examine the convergence of the important physical quantities. We have 4 million particles within the cluster and force resolution 0.5 kpc/h (0.05% of the virial radius). The central density profile has a logarithmic slope of -1.5, as found in lower resolution studies of the same halo, indicating that the profile has converged to the ``physical'' limit down to scales of a few kpc. Also the abundance of substructure is consistent with that derived from lower resolution runs; on the scales explored, the mass and circular velocity functions are close to power laws of exponents ~ -1.9 and -4. Overmerging appears to be globally unimportant for suhalos with circular velocities > 100 km/s. We can trace most of the cluster progenitors from z=3 to the present; the central object (the dark matter analog of a cD galaxy)is assembled between z=3 and 1 from the merging of a dozen halos with v_circ \sim 300 km/s. The mean circular velocity of the subhalos decreases by ~ 20% over 5 billion years, due to tidal mass loss. The velocity dispersions of halos and dark matter globally agree within 10%, but the halos are spatially anti-biased, and, in the very central region of the cluster, they show positive velocity bias; however, this effect appears to depend on numerical resolution.Comment: 19 pages, 13 figures, ApJ, in press. Text significantly clarifie

    Infall near clusters of galaxies: comparing gas and dark matter velocity profiles

    Full text link
    We consider the dynamics in and near galaxy clusters. Gas, dark matter and galaxies are presently falling into the clusters between approximately 1 and 5 virial radii. At very large distances, beyond 10 virial radii, all matter is following the Hubble flow, and inside the virial radius the matter particles have on average zero radial velocity. The cosmological parameters are imprinted on the infall profile of the gas, however, no method exists, which allows a measurement of it. We consider the results of two cosmological simulations (using the numerical codes RAMSES and Gadget) and find that the gas and dark matter radial velocities are very similar. We derive the relevant dynamical equations, in particular the generalized hydrostatic equilibrium equation, including both the expansion of the Universe and the cosmological background. This generalized gas equation is the main new contribution of this paper. We combine these generalized equations with the results of the numerical simulations to estimate the contribution to the measured cluster masses from the radial velocity: inside the virial radius it is negligible, and inside two virial radii the effect is below 40%, in agreement the earlier analyses for DM. We point out how the infall velocity in principle may be observable, by measuring the gas properties to distance of about two virial radii, however, this is practically not possible today.Comment: 7 pages, 3 figures, to appear in MNRA

    Search For A Permanent Electric Dipole Moment Using Atomic Indium

    Full text link
    We propose indium (In) as a possible candidate for observing the permanent electric dipole moment (EDM) arising from the violations of parity (P) and time-reversal (T) symmetries. This atom has been laser cooled and therefore the measurement of its EDM has the potential of improving on the current best EDM limit for a paramagnetic atom which comes from thallium. We report the results of our calculations of the EDM enhancement factor due to the electron EDM and the ratio of the atomic EDM to the electron-nucleus scalar-pseudoscalar (S-PS) interaction coupling constant in In in the framework of the relativistic coupled cluster theory. It might be possible to get new limits for the electron EDM and the S-PS CP violating coupling constant by combining the results of our calculations with the measured value of the EDM of In when it is available. These limits could have important implications for the standard model (SM) of particle physics.Comment: 5 pages, 1 fig, Rapid Communicatio

    Scaling treatment of the random field Ising model

    Full text link
    Analytic phenomenological scaling is carried out for the random field Ising model in general dimensions using a bar geometry. Domain wall configurations and their decorated profiles and associated wandering and other exponents (ζ,γ,δ,μ)(\zeta,\gamma,\delta,\mu) are obtained by free energy minimization. Scaling between different bar widths provides the renormalization group (RG) transformation. Its consequences are (1) criticality at h=T=0h=T=0 in d2d \leq 2 with correlation length ξ(h,T)\xi(h,T) diverging like ξ(h,0)h2/(2d)\xi(h,0) \propto h^{-2/(2-d)} for d<2d<2 and ξ(h,0)exp[1/(c1γhγ)]\xi(h,0) \propto \exp[1/(c_1\gamma h^{\gamma})] for d=2d=2, where c1c_1 is a decoration constant; (2) criticality in d=2+ϵd = 2+\epsilon dimensions at T=0T=0, h=(ϵ/2c1)1/γh^{\ast}= (\epsilon/2c_1)^{1/\gamma}, where ξ[(ss)/s]2ϵ/γ\xi \propto [(s-s^{\ast})/s]^{-2\epsilon/\gamma}, shγs \equiv h^{\gamma}. Finite temperature generalizations are outlined. Numerical transfer matrix calculations and results from a ground state algorithm adapted for strips in d=2d=2 confirm the ingredients which provide the RG description.Comment: RevTex v3.0, 5 pages, plus 4 figures uuencode

    Charge control experiments on a CH-53E helicopter in a dusty environment

    Get PDF
    Charge control tests were carried out on a ground based, Marine Corps helicopter to determine if control of the electric fields acting on the engine exhaust gases could be used to reduce the electrification of the helicopter when it operated in a dusty atmosphere. The test aircraft was flown to a dusty, unpaved area and was then isolated electrically from the earth. When the helicopter engines were operated at ground idle with the rotor locked, the isolated aircraft charged positively, as had been observed previously. However, when the rotor brake was released and the turning rotor created a downdraft that raised dust clouds, the aircraft always became charged more positively, to potentials ranging form +30 to +45 kV. The dust clouds raised by the rotor downwash invariably carried negative space charges with concentrations of up to -100 nC/cu m and caused surface electric fields with strengths of up to 10 kV/m immediately down wind of the aircraft. The natural charging of the helicopter operating in these dust clouds was successfully opposed by control of the electric fields acting on the hot, electrically conductive exhaust gases. The control was achieved by placing electrostatic shield around the exhausts

    Percolation Analysis of a Wiener Reconstruction of the IRAS 1.2 Jy Redshift Catalog

    Get PDF
    We present percolation analyses of Wiener Reconstructions of the IRAS 1.2 Jy Redshift Survey. There are ten reconstructions of galaxy density fields in real space spanning the range β=0.1\beta= 0.1 to 1.01.0, where β=Ω0.6/b{\beta}={\Omega^{0.6}}/b, Ω\Omega is the present dimensionless density and bb is the bias factor. Our method uses the growth of the largest cluster statistic to characterize the topology of a density field, where Gaussian randomized versions of the reconstructions are used as standards for analysis. For the reconstruction volume of radius, R100h1R {\approx} 100 h^{-1} Mpc, percolation analysis reveals a slight `meatball' topology for the real space, galaxy distribution of the IRAS survey. cosmology-galaxies:clustering-methods:numericalComment: Revised version accepted for publication in The Astrophysical Journal, January 10, 1997 issue, Vol.47

    Accurate determination of electric-dipole matrix elements in K and Rb from Stark shift measurements

    Full text link
    Stark shifts of potassium and rubidium D1 lines have been measured with high precision by Miller et al [1]. In this work, we combine these measurements with our all-order calculations to determine the values of the electric-dipole matrix elements for the 4p_j-3d_j' transitions in K and for the 5p_j-4d_j' transitions in Rb to high precision. The 4p_1/2-3d_3/2 and 5p_1/2-4d_3/2 transitions contribute on the order of 90% to the respective polarizabilities of the np_1/2 states in K and Rb, and the remaining 10% can be accurately calculated using the relativistic all-order method. Therefore, the combination of the experimental data and theoretical calculations allows us to determine the np-(n-1)d matrix elements and their uncertainties. We compare these values with our all-order calculations of the np-(n-1)d matrix elements in K and Rb for a benchmark test of the accuracy of the all-order method for transitions involving nd states. Such matrix elements are of special interest for many applications, such as determination of magic wavelengths in alkali-metal atoms for state-insensitive cooling and trapping and determination of blackbody radiation shifts in optical frequency standards with ions.Comment: 5 page
    corecore