2,903 research outputs found

    Localization properties of a one-dimensional tight-binding model with non-random long-range inter-site interactions

    Get PDF
    We perform both analytical and numerical studies of the one-dimensional tight-binding Hamiltonian with stochastic uncorrelated on-site energies and non-fluctuating long-range hopping integrals . It was argued recently [A. Rodriguez at al., J. Phys. A: Math. Gen. 33, L161 (2000)] that this model reveals a localization-delocalization transition with respect to the disorder magnitude provided . The transition occurs at one of the band edges (the upper one for and the lower one for). The states at the other band edge are always localized, which hints on the existence of a single mobility edge. We analyze the mobility edge and show that, although the number of delocalized states tends to infinity, they form a set of null measure in the thermodynamic limit, i.e. the mobility edge tends to the band edge. The critical magnitude of disorder for the band edge states is computed versus the interaction exponent by making use of the conjecture on the universality of the normalized participation number distribution at transition.Comment: 7 pages, 6 postscript figures, uses revtex

    Statistics of low-energy levels of a one-dimensional weakly localized Frenkel exciton: A numerical study

    Get PDF
    Numerical study of the one-dimensional Frenkel Hamiltonian with on-site randomness is carried out. We focus on the statistics of the energy levels near the lower exciton band edge, i. e. those determining optical response. We found that the distribution of the energy spacing between the states that are well localized at the same segment is characterized by non-zero mean, i.e. these states undergo repulsion. This repulsion results in a local discrete energy structure of a localized Frenkel exciton. On the contrary, the energy spacing distribution for weakly overlapping local ground states (the states with no nodes within their localization segments) that are localized at different segments has zero mean and shows almost no repulsion. The typical width of the latter distribution is of the same order as the typical spacing in the local discrete energy structure, so that this local structure is hidden; it does not reveal itself neither in the density of states nor in the linear absorption spectra. However, this structure affects the two-exciton transitions involving the states of the same segment and can be observed by the pump-probe spectroscopy. We analyze also the disorder degree scaling of the first and second momenta of the distributions.Comment: 10 pages, 6 figure

    DEVELOPMENT OF THIN FILMS FOR SUPERCONDUCTING RF CAVITIES

    Get PDF
    Abstract Superconducting coatings for superconducting radio frequency (SRF) cavities is an intensively developing field that should ultimately lead to acceleration gradients better than those obtained by bulk Nb RF cavities. ASTeC has built and developed experimental systems for superconducting thin-film deposition, surface analysis and measurement of Residual Resistivity Ratio (RRR). Nb thin-films were deposited by magnetron sputtering in DC or pulsed DC mode (100 to 350 kHz with 50% duty cycle) with powers ranging from 100 to 600 W at various temperatures ranging from room temperature to 800 °C on Si (100) substrates. The first results gave RRR in the range from 2 to 22 with a critical temperature T c 9.5 K. Scanning electron microscopy (SEM), x-ray diffraction (XRD), electron back scattering diffraction (EBSD) and DC SQUID magnetometry revealed significant correlations between the film structure, morphology and superconducting properties

    Giant negative magnetoresistance in semiconductors doped by multiply charged deep impurities

    Get PDF
    A giant negative magnetoresistance has been observed in bulk germanium doped with multiply charged deep impurities. Applying a magnetic field the resistance may decrease exponentially at any orientation of the field. A drop of the resistance as much as about 10000% has been measured at 6 T. The effect is attributed to the spin splitting of impurity ground state with a very large g-factor in the order of several tens depending on impurity.Comment: 4 pages, 4 figure

    The compensation approach for walks with small steps in the quarter plane

    Get PDF
    This paper is the first application of the compensation approach to counting problems. We discuss how this method can be applied to a general class of walks in the quarter plane Z+2Z_{+}^{2} with a step set that is a subset of {(1,1),(1,0),(1,1),(0,1),(1,1)}\{(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1)\} in the interior of Z+2Z_{+}^{2}. We derive an explicit expression for the counting generating function, which turns out to be meromorphic and nonholonomic, can be easily inverted, and can be used to obtain asymptotic expressions for the counting coefficients.Comment: 22 pages, 5 figure

    Operator interpretation of resonances generated by some operator matrices

    Full text link
    We consider the analytic continuation of the transfer function for a 2x2 matrix Hamiltonian into the unphysical sheets of the energy Riemann surface. We construct a family of non-selfadjoint operators which reproduce certain parts of the transfer-function spectrum including resonances situated on the unphysical sheets neighboring the physical sheet. On this basis, completeness and basis properties for the root vectors of the transfer function (including those for the resonances) are proved.Comment: LaTeX, 15 pages, no figures; Contribution to Proceedings of the Mark Krein International Conference on Operator Theory and Applications, Odessa, August 18-22, 199

    First Results of Magnetic Field Penetration Measurements of Multilayer SIS Structures

    Get PDF
    The performance of superconducting RF cavities made of bulk Nb is limited by a breakdown field of Bp ≈200 mT, close to the superheating field for Nb. A potentially promising solution to enhance the breakdown field of the SRF cavities beyond the intrinsic limits of Nb is a multilayer coating suggested in [1]. In the simplest case, such a multilayer may be a superconductor-insulator-superconductor (S-I-S) coating, for example, bulk niobium (S) coated with a thin film of insulator (I) followed by a thin layer of another superconductor (S) which could be e.g. dirty niobium [2]. Here we report the first results of our measurements of field penetration in Nb thin films and Nb-AlN-Nb multilayer samples at 4.2 K using the magnetic field penetration facility designed, built and tested in ASTeC

    Growth of uniform infinite causal triangulations

    Full text link
    We introduce a growth process which samples sections of uniform infinite causal triangulations by elementary moves in which a single triangle is added. A relation to a random walk on the integer half line is shown. This relation is used to estimate the geodesic distance of a given triangle to the rooted boundary in terms of the time of the growth process and to determine from this the fractal dimension. Furthermore, convergence of the boundary process to a diffusion process is shown leading to an interesting duality relation between the growth process and a corresponding branching process.Comment: 27 pages, 6 figures, small changes, as publishe
    corecore