1,623 research outputs found

    A model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    Full text link
    Electric double layer supercapacitors are promising devices for high-power energy storage based on the reversible absorption of ions into porous, conducting electrodes. Graphene is a particularly good candidate for the electrode material in supercapacitors due to its high conductivity and large surface area. In this paper we consider supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted "spacer" molecules. We show that the large volumetric capacitances C > 100 F/cm^3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.Comment: 13 pages, 5 figures; additional discussion and supporting calculations adde

    Thermoelectric effects in a strongly correlated model for Nax_xCoO2_2

    Get PDF
    Thermal response functions of strongly correlated electron systems are of appreciable interest to the larger scientific community both theoretically and technologically. Here we focus on the infinitely correlated t-J model on a geometrically frustrated two-dimensional triangular lattice. Using exact diagonalization on a finite sized system we calculate the dynamical thermal response functions in order to determine the thermopower, Lorenz number, and dimensionless figure of merit. The dynamical thermal response functions is compared to the infinite frequency limit and shown to be very weak functions of frequency, hence, establishing the validity of the high frequency formalism recently proposed by Shastry for the thermopower, Lorenz number, and the dimensionless figure of merit. Further, the thermopower is demonstrated to have a low to mid temperature enhancement when the sign of the hopping parameter tt is switched from positive to negative for the geometrically frustrated lattice considered.Comment: 16 pages, 10 figures, color version available at http://physics.ucsc.edu/~peterson/mrpeterson-condmat-NCO.pdf. V.2 has fixed minor typos in Eq. 11, 19, 25, and 26. V.3 is a color versio

    Coulomb drag as a measure of trigonal warping in doped graphene

    Full text link
    I suggest to use the effect of Coulomb drag between two closely positioned graphite monolayers (graphene sheets) for experimental measurement of the strength of weak non-linearities of the spectrum in graphene. I consider trigonal warping as a representative mechanism responsible for the drag effect. Since graphene is relatively defect-free, I evaluate the drag conductivity in the ballistic regime and find that it is proportional to the fourth power of the warping strength.Comment: 4 pages, 1 figur

    The development of a non-cryogenic nitrogen/oxygen supply system

    Get PDF
    A hydrazine/water electrolysis process system module design was fabricated and tested to demonstrate component and module performance. This module is capable of providing both the metabolic oxygen for crew needs and the oxygen and nitrogen for spacecraft leak makeup. The component designs evolved through previous R and D efforts, and were fabricated and tested individually and then were assembled into a complete module which was successfully tested for 1000 hours to demonstrate integration of the individual components. A survey was made of hydrazine sensor technology and a cell math model was derived

    Impurity induced density of states and residual transport in nonunitary superconductors

    Full text link
    We obtain general expressions for the residual density of states, electrical conductivity and thermal conductivity for non-unitary superconductors due to impurity scattering. We apply the results to the so-called `B phase' of PrOs4Sb12, which we describe using a non-unitary gap function derived from symmetry considerations. The conductivity tensor has inequivalent diagonal components due to off-axis nodal positions which may be detectable in experiments.Comment: 8 pages, 1 figur

    Orbital Order and Spontaneous Orthorhombicity in Iron Pnictides

    Full text link
    A growing list of experiments show orthorhombic electronic anisotropy in the iron pnictides, in some cases at temperatures well above the spin density wave transition. These experiments include neutron scattering, resistivity and magnetoresistance measurements, and a variety of spectroscopies. We explore the idea that these anisotropies stem from a common underlying cause: orbital order manifest in an unequal occupation of dxzd_{xz} and dyzd_{yz} orbitals, arising from the coupled spin-orbital degrees of freedom. We emphasize the distinction between the total orbital occupation (the integrated density of states), where the order parameter may be small, and the orbital polarization near the Fermi level which can be more pronounced. We also discuss light-polarization studies of angle-resolved photoemission, and demonstrate how x-ray absorption linear dichroism may be used as a method to detect an orbital order parameter.Comment: Orig.: 4+ pages; Rev.: 4+ pages with updated content and reference

    Theory of phonon-drag thermopower of extrinsic semiconducting single-wall carbon nanotubes and comparison with previous experimental data

    Full text link
    A theoretical model for the calculation of the phonon-drag thermopower, SgS^{g}, in degenerately doped semiconducting single-wall carbon nanotubes (SWCNTs) is proposed. Detailed calculations of SgS^{g} are performed as a function of temperature, tube radius and position of the Fermi level. We derive a simple analytical expression for SgS^{g} that can be utilized to determine the free carrier density in doped nanotubes. At low temperatures SgS^{g} shows an activated behavior characteristic of the one-dimensional (1D) character of carriers. Screening effects are taken into account and it is found that they dramatically reduce the magnitude of SgS^{g}. Our results are compared with previous published experimental data in bulk p-doped SWCNT materials. Excellent agreement is obtained in the temperature range 10-200 K for a consistent set of parameters. This is a striking result in view of the complexity of these systems.Comment: 21 pages, 6 figures. This version has been accepted for publication in Phys. Rev.

    Electronic properties of graphene multilayers

    Full text link
    We study the effects of disorder in the electronic properties of graphene multilayers, with special focus on the bilayer and the infinite stack. At low energies and long wavelengths, the electronic self-energies and density of states exhibit behavior with divergences near half-filling. As a consequence, the spectral functions and conductivities do not follow Landau's Fermi liquid theory. In particular, we show that the quasiparticle decay rate has a minimum as a function of energy, there is a universal minimum value for the in-plane conductivity of order e^2/h per plane and, unexpectedly, the c-axis conductivity is enhanced by disorder at low doping, leading to an enormous conductivity anisotropy at low temperatures.Comment: 4 pages, 4 figure. Reference to exciting new ARPES results on graphite added (we thank A. Lanzara for sharing the paper prior to its publication

    Single polaron properties of the breathing-mode Hamiltonian

    Full text link
    We investigate numerically various properties of the one-dimensional (1D) breathing-mode polaron. We use an extension of a variational scheme to compute the energies and wave-functions of the two lowest-energy eigenstates for any momentum, as well as a scheme to compute directly the polaron Greens function. We contrast these results with results for the 1D Holstein polaron. In particular, we find that the crossover from a large to a small polaron is significantly sharper. Unlike for the Holstein model, at moderate and large couplings the breathing-mode polaron dispersion has non-monotonic dependence on the polaron momentum k. Neither of these aspects is revealed by a previous study based on the self-consistent Born approximation

    Partly Occupied Wannier Functions

    Get PDF
    We introduce a scheme for constructing partly occupied, maximally localized Wannier functions (WFs) for both molecular and periodic systems. Compared to the traditional occupied WFs the partly occupied WFs posses improved symmetry and localization properties achieved through a bonding-antibonding closing procedure. We demonstrate the equivalence between bonding-antibonding closure and the minimization of the average spread of the WFs in the case of a benzene molecule and a linear chain of Pt atoms. The general applicability of the method is demonstrated through the calculation of WFs for a metallic system with an impurity: a Pt wire with a hydrogen molecular bridge.Comment: 5 pages, 4 figure
    • …
    corecore