19,845 research outputs found
Dynamic Provable Data Possession Protocols with Public Verifiability and Data Privacy
Cloud storage services have become accessible and used by everyone.
Nevertheless, stored data are dependable on the behavior of the cloud servers,
and losses and damages often occur. One solution is to regularly audit the
cloud servers in order to check the integrity of the stored data. The Dynamic
Provable Data Possession scheme with Public Verifiability and Data Privacy
presented in ACISP'15 is a straightforward design of such solution. However,
this scheme is threatened by several attacks. In this paper, we carefully
recall the definition of this scheme as well as explain how its security is
dramatically menaced. Moreover, we proposed two new constructions for Dynamic
Provable Data Possession scheme with Public Verifiability and Data Privacy
based on the scheme presented in ACISP'15, one using Index Hash Tables and one
based on Merkle Hash Trees. We show that the two schemes are secure and
privacy-preserving in the random oracle model.Comment: ISPEC 201
Formation of Long Single Quantum Dots in High Quality InSb Nanowires Grown by Molecular Beam Epitaxy
We report on realization and transport spectroscopy study of single quantum
dots (QDs) made from InSb nanowires grown by molecular beam epitaxy (MBE). The
nanowires employed are 50-80 nm in diameter and the QDs are defined in the
nanowires between the source and drain contacts on a Si/SiO substrate. We
show that highly tunable QD devices can be realized with the MBE-grown InSb
nanowires and the gate-to-dot capacitance extracted in the many-electron
regimes is scaled linearly with the longitudinal dot size, demonstrating that
the devices are of single InSb nanowire QDs even with a longitudinal size of
~700 nm. In the few-electron regime, the quantum levels in the QDs are resolved
and the Land\'e g-factors extracted for the quantum levels from the
magnetotransport measurements are found to be strongly level-dependent and
fluctuated in a range of 18-48. A spin-orbit coupling strength is extracted
from the magnetic field evolutions of a ground state and its neighboring
excited state in an InSb nanowire QD and is on the order of ~300 eV. Our
results establish that the MBE-grown InSb nanowires are of high crystal quality
and are promising for the use in constructing novel quantum devices, such as
entangled spin qubits, one-dimensional Wigner crystals and topological quantum
computing devices.Comment: 19 pages, 5 figure
Nonsaturating magnetoresistance and nontrivial band topology of type-II Weyl semimetal NbIrTe4
Weyl semimetals, characterized by nodal points in the bulk and Fermi arc
states on the surface, have recently attracted extensive attention due to the
potential application on low energy consumption electronic materials. In this
report, the thermodynamic and transport properties of a theoretically predicted
Weyl semimetal NbIrTe4 is measured in high magnetic fields up to 35 T and low
temperatures down to 0.4 K. Remarkably, NbIrTe4 exhibits a nonsaturating
transverse magnetoresistance which follows a power-law dependence in B.
Low-field Hall measurements reveal that hole-like carriers dominate the
transport for T 80 K, while the significant enhancement of electron
mobilities with lowering T results in a non-negligible contribution from
electron-like carriers which is responsible for the observed non-linear Hall
resistivity at low T. The Shubnikov-de Haas oscillations of the Hall
resistivity under high B give the light effective masses of charge carriers and
the nontrivial Berry phase associated with Weyl fermions. Further
first-principles calculations confirm the existence of 16 Weyl points located
at kz = 0, 0.02 and 0.2 planes in the Brillouin zone.Comment: 5 figures, 1 tabl
- …