2 research outputs found

    Characterization of thymocyte phenotypic alterations induced by long-lasting beta-adrenoceptor blockade in vivo and its effects on thymocyte proliferation and apoptosis

    No full text
    Adult male Wistar rats were subjected to propranolol (P, 0.40 mg/100 g/day) or saline (S) administration (controls) over 14 days. The expression of major differentiation molecules on thymocytes and Thy-1 (CD90) molecules, which are shown to adjust thymocyte sensitivity to TCR alpha beta signaling, was studied. In addition, the sensitivity of thymocytes to induction of apoptosis and concanavalin A (Con A) signaling was estimated. The thymocytes from P-treated (PT) rats exhibited an increased sensitivity to induction of apoptosis, as well as to Con A stimulation. Furthermore, P treatment produced changes in the distribution of thymocyte subsets suggesting that more cells passed positive selection and further differentiated into mature CD4+ or CD8+ single positive (SP) TCR alpha beta(high) cells. These changes may, at least partly, be related to the markedly increased density of Thy-1 surface expression on TCR alpha beta(low) thymocytes from these rats. The increased frequency of cells expressing the CD4+25+ phenotype, which has been shown to be characteristic for regulatory cells in the thymus, may also indicate alterations in thymocyte selection following P treatment. Inasmuch as positive and negative selections play an important role in continuously reshaping the T-cell repertoire and maintaining tolerance, the hereby presented study suggests that pharmacological manipulations with beta-AR signaling, or chemically evoked alterations in catecholamine release, may interfere with the regulation of thymocyte selection, and consequently with the immune response

    Age-Associated Remodeling of Neural and Nonneural Thymic Catecholaminergic Network Affects Thymopoietic Productivity

    No full text
    Ageing is associated with a progressive decline in thymic cytoarchitecture followed by a less efficient T cell development and decreased emigration of naive T cells to the periphery. These thymic changes are linked to increased morbidity and mortality from infectious, malignant and autoimmune diseases in old age. Therefore, it is of paramount importance to understand the thymic homeostatic processes across the life span, as well as to identify factors and elucidate mechanisms driving or contributing to the thymic involution. Catecholamines (CAs) derived from sympathetic nerves and produced locally by thymic cells represent an important component of the thymic microenvironment. In young rats, they provide a subtle tonic suppressive influence on T cell development acting via beta(2)- and alpha(1)-adrenoceptors (ARs) expressed on thymic nonlymphoid cells and thymocytes. In the face of thymic involution, a progressive increase in the thymic noradrenaline level, reflecting a rise in the density of noradrenergic nerve fibers and CA-synthesizing cells, occurs. In addition, the density of beta(2)- and alpha(1)-AR-expressing thymic nonlymphoid cells and the alpha(1)-AR thymocyte surface density also exhibit a pronounced increase with age. The data obtained from studies investigating effects of AR blockade on T cell development indicated that age-related changes in CA-mediated thymic communications, certainly those involving alpha(1)-ARs, may contribute to diminished thymopoietic efficiency in the elderly. Having in mind thymic plasticity in the course of ageing, and broadening possibilities for pharmacological modulation of CA signaling, we here present and discuss the progress in research related to a role of CAs in thymic homeostasis and age-related decay in the thymic naive T cell output. Copyright (C) 2011 S. Karger AG, Base
    corecore