4,443 research outputs found

    Optimal distinction between non-orthogonal quantum states

    Get PDF
    Given a finite set of linearly independent quantum states, an observer who examines a single quantum system may sometimes identify its state with certainty. However, unless these quantum states are orthogonal, there is a finite probability of failure. A complete solution is given to the problem of optimal distinction of three states, having arbitrary prior probabilities and arbitrary detection values. A generalization to more than three states is outlined.Comment: 9 pages LaTeX, one PostScript figure on separate pag

    Card shuffling and diophantine approximation

    Full text link
    The ``overlapping-cycles shuffle'' mixes a deck of nn cards by moving either the nnth card or the (n−k)(n-k)th card to the top of the deck, with probability half each. We determine the spectral gap for the location of a single card, which, as a function of kk and nn, has surprising behavior. For example, suppose kk is the closest integer to αn\alpha n for a fixed real α∈(0,1)\alpha\in(0,1). Then for rational α\alpha the spectral gap is Θ(n−2)\Theta(n^{-2}), while for poorly approximable irrational numbers α\alpha, such as the reciprocal of the golden ratio, the spectral gap is Θ(n−3/2)\Theta(n^{-3/2}).Comment: Published in at http://dx.doi.org/10.1214/07-AAP484 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    KATRIN Sensitivity to Sterile Neutrino Mass in the Shadow of Lightest Neutrino Mass

    Full text link
    The presence of light sterile neutrinos would strongly modify the energy spectrum of the Tritium \beta-electrons. We perform an analysis of the KATRIN experiment's sensitivity by scanning almost all the allowed region of neutrino mass-squared difference and mixing angles of the 3+1 scenario. We consider the effect of the unknown absolute mass scale of active neutrinos on the sensitivity of KATRIN to the sterile neutrino mass. We show that after 3 years of data-taking, the KATRIN experiment can be sensitive to mixing angles as small as sin^2 (2\theta_s) ~ 10^-2. Particularly we show that for small mixing angles, sin^2 (2\theta_s) < 0.1, the KATRIN experiment can gives the strongest limit on active-sterile mass-squared difference.Comment: 4 pages, 2 figures, matches the published versio

    Nonlinear quantum state transformation of spin-1/2

    Get PDF
    A non-linear quantum state transformation is presented. The transformation, which operates on pairs of spin-1/2, can be used to distinguish optimally between two non-orthogonal states. Similar transformations applied locally on each component of an entangled pair of spin-1/2 can be used to transform a mixed nonlocal state into a quasi-pure maximally entangled singlet state. In both cases the transformation makes use of the basic building block of the quantum computer, namely the quantum-XOR gate.Comment: 12 pages, LaTeX, amssym, epsfig (2 figures included

    Convex probability domain of generalized quantum measurements

    Full text link
    Generalized quantum measurements with N distinct outcomes are used for determining the density matrix, of order d, of an ensemble of quantum systems. The resulting probabilities are represented by a point in an N-dimensional space. It is shown that this point lies in a convex domain having at most d^2-1 dimensions.Comment: 7 pages LaTeX, one PostScript figure on separate pag

    Tug-of-war and the infinity Laplacian

    Full text link
    We prove that every bounded Lipschitz function F on a subset Y of a length space X admits a tautest extension to X, i.e., a unique Lipschitz extension u for which Lip_U u = Lip_{boundary of U} u for all open subsets U of X that do not intersect Y. This was previously known only for bounded domains R^n, in which case u is infinity harmonic, that is, a viscosity solution to Delta_infty u = 0. We also prove the first general uniqueness results for Delta_infty u = g on bounded subsets of R^n (when g is uniformly continuous and bounded away from zero), and analogous results for bounded length spaces. The proofs rely on a new game-theoretic description of u. Let u^epsilon(x) be the value of the following two-player zero-sum game, called tug-of-war: fix x_0=x \in X minus Y. At the kth turn, the players toss a coin and the winner chooses an x_k with d(x_k, x_{k-1})< epsilon. The game ends when x_k is in Y, and player one's payoff is F(x_k) - (epsilon^2/2) sum_{i=0}^{k-1} g(x_i) We show that the u^\epsilon converge uniformly to u as epsilon tends to zero. Even for bounded domains in R^n, the game theoretic description of infinity-harmonic functions yields new intuition and estimates; for instance, we prove power law bounds for infinity-harmonic functions in the unit disk with boundary values supported in a delta-neighborhood of a Cantor set on the unit circle.Comment: 44 pages, 4 figure

    No directed fractal percolation in zero area

    Full text link
    We show that fractal (or "Mandelbrot") percolation in two dimensions produces a set containing no directed paths, when the set produced has zero area. This improves a similar result by the first author in the case of constant retention probabilities to the case of retention probabilities approaching 1
    • …
    corecore