6,791 research outputs found

    A Riemann-Hilbert Problem for an Energy Dependent Schr\"odinger Operator

    Full text link
    \We consider an inverse scattering problem for Schr\"odinger operators with energy dependent potentials. The inverse problem is formulated as a Riemann-Hilbert problem on a Riemann surface. A vanishing lemma is proved for two distinct symmetry classes. As an application we prove global existence theorems for the two distinct systems of partial differential equations ut+(u2/2+w)x=0,wt±uxxx+(uw)x=0u_t+(u^2/2+w)_x=0, w_t\pm u_{xxx}+(uw)_x=0 for suitably restricted, complementary classes of initial data

    Cosmological Perturbations of Quantum-Mechanical Origin and Anisotropy of the Microwave Background

    Get PDF
    Cosmological perturbations generated quantum-mechanically (as a particular case, during inflation) possess statistical properties of squeezed quantum states. The power spectra of the perturbations are modulated and the angular distribution of the produced temperature fluctuations of the CMBR is quite specific. An exact formula is derived for the angular correlation function of the temperature fluctuations caused by squeezed gravitational waves. The predicted angular pattern can, in principle, be revealed by the COBE-type observations.Comment: 9 pages, WUGRAV-92-17 Accepted for Publication in Phys. Rev. Letters (1993

    Integration of the Friedmann equation for universes of arbitrary complexity

    Full text link
    An explicit and complete set of constants of the motion are constructed algorithmically for Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) models consisting of an arbitrary number of non-interacting species. The inheritance of constants of the motion from simpler models as more species are added is stressed. It is then argued that all FLRW models admit what amounts to a unique candidate for a gravitational epoch function (a dimensionless scalar invariant derivable from the Riemann tensor without differentiation which is monotone throughout the evolution of the universe). The same relations that lead to the construction of constants of the motion allow an explicit evaluation of this function. In the simplest of all models, the Λ\LambdaCDM model, it is shown that the epoch function exists for all models with Λ>0\Lambda > 0, but for almost no models with Λ≀0\Lambda \leq 0.Comment: Final form to appear in Physical Review D1

    On the Weyl transverse frames in type I spacetimes

    Full text link
    We apply a covariant and generic procedure to obtain explicit expressions of the transverse frames that a type I spacetime admits in terms of an arbitrary initial frame. We also present a simple and general algorithm to obtain the Weyl scalars Κ2T\Psi_2^T, Κ0T\Psi_0^T and Κ4T\Psi_4^T associated with these transverse frames. In both cases it is only necessary to choose a particular root of a cubic expression.Comment: 12 pages, submitted to Gen. Rel. Grav. (6-3-2004

    A note on the uniqueness of global static decompositions

    Full text link
    We discuss when static Killing vector fields are standard, that is, leading to a global orthogonal splitting of the spacetime. We prove that such an orthogonal splitting is unique whenever the natural space is compact. This is carried out by proving that many notable spacelike submanifolds must be contained in an orthogonal slice. Possible obstructions to the global splitting are also considered.Comment: 6 pages, no figure

    Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. I. The conformal field equations

    Get PDF
    This is the first in a series of articles on the numerical solution of Friedrich's conformal field equations for Einstein's theory of gravity. We will discuss in this paper why one should be interested in applying the conformal method to physical problems and why there is good hope that this might even be a good idea from the numerical point of view. We describe in detail the derivation of the conformal field equations in the spinor formalism which we use for the implementation of the equations, and present all the equations as a reference for future work. Finally, we discuss the implications of the assumptions of a continuous symmetry.Comment: 19 pages, LaTeX2

    Can one detect a non-smooth null infinity?

    Get PDF
    It is shown that the precession of a gyroscope can be used to elucidate the nature of the smoothness of the null infinity of an asymptotically flat spacetime (describing an isolated body). A model for which the effects of precession in the non-smooth null infinity case are of order r−2ln⁡rr^{-2}\ln r is proposed. By contrast, in the smooth version the effects are of order r−3r^{-3}. This difference should provide an effective criterion to decide on the nature of the smoothness of null infinity.Comment: 6 pages, to appear in Class. Quantum Gra

    On the observational determination of squeezing in relic gravitational waves and primordial density perturbations

    Get PDF
    We develop a theory in which relic gravitational waves and primordial density perturbations are generated by strong variable gravitational field of the early Universe. The generating mechanism is the superadiabatic (parametric) amplification of the zero-point quantum oscillations. The generated fields have specific statistical properties of squeezed vacuum quantum states. Macroscopically, squeezing manifests itself in a non-stationary character of variances and correlation functions of the fields, the periodic structures of the metric power spectra, and, as a consequence, in oscillatory behavior of the higher order multipoles C_l of the cosmic microwave background anisotropy. We start with the gravitational wave background and then apply the theory to primordial density perturbations. We derive an analytical formula for the positions of peaks and dips in the angular power spectrum l(l+1)C_l as a function of l. This formula shows that the values of l at the peak positions are ordered in the proportion 1:3:5:..., whereas at the dips they are ordered as 1:2:3:.... We compare the derived positions with the actually observed features, and find them to be in reasonably good agreement. It appears that the observed structure is better described by our analytical formula based on the (squeezed) metric perturbations associated with the primordial density perturbations, rather than by the acoustic peaks reflecting the existence of plasma sound waves at the last scattering surface. We formulate a forecast for other features in the angular power spectrum, that may be detected by the advanced observational missions, such as MAP and PLANCK. We tentatively conclude that the observed structure is a macroscopic manifestation of squeezing in the primordial metric perturbations.Comment: 34 pages, 3 figures; to appear in Phys. Rev. D66, 0435XX (2002); includes Note Added in Proofs: "The latest CBI observations (T.J.Pearson et al., astro-ph/0205388) have detected four peaks, at l ~ 550, 800, 1150, 1500, and four dips, at l ~ 400, 700, 1050, 1400. These positions are in a very good agreement with the theoretical formula (6.35) of the present paper. We interpret this data as confirmation of our conclusion that it is gravity, and not acoustics, that is responsible for the observed structure.
    • 

    corecore