2,161 research outputs found

    From Trauma to Transformation: Trauma-Informed Pedagogy in Law School

    Get PDF
    In this essay, we seek to expand the meaning of “trauma” by aligning trauma-informed pedagogy with principles of disability justice and progressive critiques of legal education. We argue first that the existence of trauma is not a sign of individual brokenness or deficiency, but rather should be taken as a warning about broken or deficient social institutions or practices. This approach to trauma recognizes the potential of those who experience trauma—whose bodies and minds bear the marks of both subordination and resilience—to contribute to institutional and structural transformation. We use as an example the trauma too often experienced in law school by students and faculty with stigmatized identities. Second, we argue that a disability justice approach to trauma calls us not only to embrace trauma-informed pedagogies for individual healing, but also to transform law teaching to accommodate the full spectrum of the human condition, using holistic pedagogical models that acknowledge the needs and capacities of human beings. Our call for structural transformation aligns with similar calls issued by feminist, critical race, and humanist critics of U.S.-style legal education

    Study on flow properties of rotor grade steel

    Get PDF
    Compression tests were performed on Gleeble 3800 Thermo-Mechanical Simulator to study the flow properties of rotor grade steel 28CrMoNiV59. Compression specimens were deformed at a constant strain rate of 10-3 s-1. The temperature range during tests was between room temperature and 1000°C with an interval of 100°C. When the normalized flow stress was plotted as a function of temperature, it exhibited three different regions. In regions I and III flow stress decreases with increase in temperature but the same increases with temperature in region II. Microstructural changes and work hardening behaviour have been studied for the deformed specimen. Furthermore, TEM analysis was also done for the samples of these three different regions (I, II & III). Strain hardening rate as a function of the normalized flow stresses decreases at larger strain and become negligible at higher temperature

    Skin Cancer Prediction Model Based on Multi-Layer Perceptron Network

    Get PDF
    Melanoma is acknowledged by the World Health Organization as the most severe type of skin cancer, significantly contributing to skin cancer-related deaths worldwide. This type of cancer manifests through noticeable changes in moles, including their size, shape, colour, or texture. In this study, we introduce an innovative and robust method for detecting and classifying melanoma in various image types, including both basic and clinical dermatological images. Our approach employs the HSV (Hue, Saturation, and Value) colour model, along with mathematical morphology and Gaussian filtering techniques. These methods are used to pinpoint the area of interest in an image and compute four key descriptors crucial for melanoma analysis: symmetry, border irregularity, colour variation, and dimension. Despite the prior usage of these descriptors over an extended period, the manner in which they are calculated in this proposal is a key factor contributing to the improvement of the outcomes. Following this, a multilayer perceptron is utilized for the purpose of categorizing malignant and benign melanoma. The study included three datasets consisting of basic and dermatological photographs that are frequently referenced in academic literature. These datasets were applied to both train and assess the effectiveness of the proposed technique. Based on the results obtained from k-fold cross-validation, it is evident that the proposed model surpasses three existing state-of-the-art approaches. In particular, the model demonstrates remarkable precision, with an accuracy rate of 98.5% for basic images and 98.6% for clinical dermatological images. It exhibits a high level of sensitivity, measuring 96.68% for simple images and 98.05% for dermatological images. Additionally, its specificity stands at 98.15% when analyzing basic images and 98.01% for dermatological images, indicating its effectiveness in both types of image analysis. The findings have demonstrated that the utilization of this gadget as an assistive tool for melanoma diagnosis would enhance levels of reliability in comparison to traditional methods

    Observation of Replica Symmetry Breaking in the 1D Anderson Localization Regime in an Erbium-Doped Random Fiber Laser

    Full text link
    The analogue of the paramagnetic to spin-glass phase transition in disordered magnetic systems, leading to the phenomenon of replica symmetry breaking, has been recently demonstrated in a two-dimensional random laser consisting of an organic-based amorphous solid-state thin film. We report here the first demonstration of replica symmetry breaking in a one-dimensional photonic system consisting of an erbium-doped random fiber laser operating in the continuous-wave regime based on a unique random fiber grating system, which plays the role of the random scatterers and operates in the Anderson localization regime. The clear transition from a photonic paramagnetic to a photonic spin glass phase, characterized by the probability distribution function of the Parisi overlap, was verified and characterized. In this unique system, the radiation field interacts only with the gain medium, and the fiber grating, which provides the disordered feedback mechanism, does not interfere with the pump

    Chandra High Resolution X-ray Spectroscopy of AM Her

    Get PDF
    We present the results of high resolution spectroscopy of the prototype polar AM Herculis observed with Chandra High Energy Transmission Grating. The X-ray spectrum contains hydrogen-like and helium-like lines of Fe, S, Si, Mg, Ne and O with several Fe L-shell emission lines. The forbidden lines in the spectrum are generally weak whereas the hydrogen-like lines are stronger suggesting that emission from a multi-temperature, collisionally ionized plasma dominates. The helium-like line flux ratios yield a plasma temperature of 2 MK and a plasma density 1 - 9 x10^12 cm^-3, whereas the line flux ratio of Fe XXVI to Fe XXV gives an ionization temperature of 12.4 +1.1 -1.4 keV. We present the differential emission measure distribution of AM Her whose shape is consistent with the volume emission measure obtained by multi-temperature APEC model. The multi-temperature plasma model fit to the average X-ray spectrum indicates the mass of the white dwarf to be ~1.15 M_sun. From phase resolved spectroscopy, we find the line centers of Mg XII, S XVI, resonance line of Fe XXV, and Fe XXVI emission modulated by a few hundred to 1000 km/s from the theoretically expected values indicating bulk motion of ionized matter in the accretion column of AM Her. The observed velocities of Fe XXVI ions are close to the expected shock velocity for a 0.6 M_sun white dwarf. The observed velocity modulation is consistent with that expected from a single pole accreting binary system.Comment: 6 figures, AASTEX style, accepted for publication in Ap

    Gap solitons in Bragg gratings with a harmonic superlattice

    Full text link
    Solitons are studied in a model of a fiber Bragg grating (BG) whose local reflectivity is subjected to periodic modulation. The superlattice opens an infinite number of new bandgaps in the model's spectrum. Averaging and numerical continuation methods show that each gap gives rise to gap solitons (GSs), including asymmetric and double-humped ones, which are not present without the superlattice.Computation of stability eigenvalues and direct simulation reveal the existence of completely stable families of fundamental GSs filling the new gaps - also at negative frequencies, where the ordinary GSs are unstable. Moving stable GSs with positive and negative effective mass are found too.Comment: 7 pages, 3 figures, submitted to EP

    Chandra Multiwavelength Project: Normal Galaxies at Intermediate Redshift

    Full text link
    (abridged) We have investigated 136 Chandra extragalactic sources without broad optical emission lines, including 93 galaxies with narrow emission lines (NELG) and 43 with only absorption lines (ALG). Based on fx/fo, Lx, X-ray spectral hardness and optical emission line diagnostics, we have conservatively classified 36 normal galaxies (20 spirals and 16 ellipticals) and 71 AGNs. We found no statistically significant evolution in Lx/LB, within the limited z range. We have built log(N)-log(S), after correcting for completeness based on a series of simulations. The best-fit slope is -1.5 for both S and B energy bands, which is considerably steeper than that of the AGN-dominated cosmic background sources, but slightly flatter than the previous estimate, indicating normal galaxies will not exceed the AGN population until fx ~ 2 x 10-18 erg s-1 cm-2 (a factor of ~5 lower than the previous estimate). A group of NELGs appear to be heavily obscured in X-rays, i.e., a typical type 2 AGN. After correcting for intrinsic absorption, their X-ray luminosities could be Lx > 10^44 erg s-1, making them type 2 quasar candidates. While most X-ray luminous ALGs (XBONG - X-ray bright, optically normal galaxy candidates) do not appear to be significantly absorbed, we found two heavily obscured objects, which could be as luminous as an unobscured broad-line quasar. Among 43 ALGs, we found two E+A galaxy candidates with strong Balmer absorption lines, but no [OII] line. The X-ray spectra of both galaxies are soft and one of them has a nearby close companion galaxy, supporting the merger/interaction scenario rather than the dusty starburst hypothesis.Comment: 31 pages, 9 figures, accepted for publication in ApJ (20 June 2006, v644), replaced with minor correction

    Detailed diagnostics of an X-ray flare in the single giant HR 9024

    Get PDF
    We analyze a 96 ks Chandra/HETGS observation of the single G-type giant HR 9024. The high flux allows us to examine spectral line and continuum diagnostics at high temporal resolution, to derive plasma parameters. A time-dependent 1D hydrodynamic model of a loop with half-length L=5×1011L = 5 \times 10^{11} cm (R/2\sim R_{\star}/2), cross-section radius r=4.3×1010r = 4.3 \times 10^{10} cm, with a heat pulse of 15 ks and 2×10112 \times 10^{11}~erg cm2^{-2} s1^{-1} deposited at the loop footpoints, satisfactorily reproduces the observed evolution of temperature and emission measure, derived from the analysis of the strong continuum emission. For the first time we can compare predictions from the hydrodynamic model with single spectral features, other than with global spectral properties. We find that the model closely matches the observed line emission, especially for the hot (108\sim 10^8 K) plasma emission of the FeXXV complex at 1.85\sim 1.85\AA. The model loop has L/R1/2L/R_{\star} \sim 1/2 and aspect ratio r/L0.1r/L \sim 0.1 as typically derived for flares observed in active stellar coronae, suggesting that the underlying physics is the same for these very dynamic and extreme phenomena in stellar coronae independently on stellar parameters and evolutionary stage.Comment: 26 pages. Accepted for publication on the Astrophysical Journa
    corecore