7,839 research outputs found

    Phase Transitions in Ultra-Cold Two-Dimensional Bose Gases

    Full text link
    We briefly review the theory of Bose-Einstein condensation in the two-dimensional trapped Bose gas and, in particular the relationship to the theory of the homogeneous two-dimensional gas and the Berezinskii-Kosterlitz-Thouless phase. We obtain a phase diagram for the trapped two-dimensional gas, finding a critical temperature above which the free energy of a state with a pair of vortices of opposite circulation is lower than that for a vortex-free Bose-Einstein condensed ground state. We identify three distinct phases which are, in order of increasing temperature, a phase coherent Bose-Einstein condensate, a vortex pair plasma with fluctuating condensate phase and a thermal Bose gas. The thermal activation of vortex-antivortex pair formation is confirmed using finite-temperature classical field simulations

    An Exploratory Study of Forces and Frictions affecting Large-Scale Model-Driven Development

    Full text link
    In this paper, we investigate model-driven engineering, reporting on an exploratory case-study conducted at a large automotive company. The study consisted of interviews with 20 engineers and managers working in different roles. We found that, in the context of a large organization, contextual forces dominate the cognitive issues of using model-driven technology. The four forces we identified that are likely independent of the particular abstractions chosen as the basis of software development are the need for diffing in software product lines, the needs for problem-specific languages and types, the need for live modeling in exploratory activities, and the need for point-to-point traceability between artifacts. We also identified triggers of accidental complexity, which we refer to as points of friction introduced by languages and tools. Examples of the friction points identified are insufficient support for model diffing, point-to-point traceability, and model changes at runtime.Comment: To appear in proceedings of MODELS 2012, LNCS Springe

    RSRM-11 (36OW011) ballistics mass properties (STS-35)

    Get PDF
    The propulsion performance and reconstructed mass properties data from Thiolol's RSRM-11 motors which were assigned to the STS-35 launch are contained. The Thiokol manufacturing designations for the motors were 360W011A/360W011B, which are referred to as RSRM-11A and RSRM-B, respectively. The launch of STS-35 occurred on 2 December 1990 at the Eastern Test Range (ETR). The data contained herein was input to the STS-35 Flight Evaluation Report. The SRM propellant, TP-H1148, is a composite type solid propellants, formulated of polybutediene acrylic acid, acryonitrile terpolymer binder, epoxy curing agent, ammonium perchlorate oxidizer, and aluminum powder fuel. A small amount of burning rate catalyst (iron oxide) was added to achieve the desired propellant burn rate. The propellant evaluation and raw material information for the RSRM-11 are included. The ballistic performance presented was based on the Operational Flight Instrumentation (OFI) 12.5 sample per second pressure data for the steady state and tail off portion of the pressure trace. Recent studies have shown that the transducers are affected by the measuring system at KSC and temperature gradients created by the igniter heaters. Therefore, an adjustment to the data from each transducer is made to make the initial reading match the atmospheric pressure at the time of launch

    Evidence for Accretion in the High-resolution X-ray Spectrum of the T Tauri Star System Hen 3-600

    Get PDF
    We present high-resolution X-ray spectra of the multiple T Tauri star system Hen 3-600, obtained with the High Energy Transmission Grating Spectrograph on the Chandra X-ray Observatory. Two binary components were detected in the zeroth-order image. Hen 3-600-A, which has a large mid-infrared excess, is a 2-3 times fainter in X-rays than Hen 3-600-B, due to a large flare on B. The dispersed X-ray spectra of the two primary components overlap spatially; spectral analysis was performed on the combined system. Analysis of the individual spectra was limited to regions where the contributions of A and B can be disentangled. This analysis results in two lines of evidence indicating that the X-ray emission from Hen 3-600 is derived from accretion processes: line ratios of O VII indicate that the characteristic density of its X-ray-emitting plasma is large; a significant component of low-temperature plasma is present and is stronger in component A. These results are consistent with results obtained from X-ray gratings spectroscopy of more rapidly accreting systems. All of the signatures of Hen 3-600 that are potential diagnostics of accretion activity -- X-ray emission, UV excess, H-alpha emission, and weak infrared excess -- suggest that its components represent a transition phase between rapidly accreting, classical T Tauri stars and non-accreting, weak-lined T Tauri stars.Comment: latex, 27 pages, 12 figures, 6 tables; accepted by Ap

    Dissipation in nanocrystalline-diamond nanomechanical resonators

    Get PDF
    We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T^(0.2), with Q^(–1) ≈ 10^(–4) at low temperatures. The frequency dependence of a large dissipation feature at ~35–55 K is consistent with thermal activation over a 0.02 eV barrier with an attempt frequency of 10 GHz

    Disruption of reflecting Bose-Einstein condensates due to inter-atomic interactions and quantum noise

    Full text link
    We perform fully three-dimensional simulations, using the truncated Wigner method, to investigate the reflection of Bose-Einstein condensates from abrupt potential barriers. We show that the inter-atomic interactions can disrupt the internal structure of a cigar-shaped cloud with a high atom density at low approach velocities, damping the center-of-mass motion and generating vortices. Furthermore, by incorporating quantum noise we show that scattering halos form at high approach velocities, causing an associated condensate depletion. We compare our results to recent experimental observations.Comment: 5 figure

    Bivariate tt-distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems

    Full text link
    Interacting many-particle systems with a mean-field one body part plus a chaos generating random two-body interaction having strength λ\lambda, exhibit Poisson to GOE and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by λ=λc\lambda=\lambda_c and λ=λF\lambda=\lambda_F, respectively; λF>>λc\lambda_F >> \lambda_c. For these systems theory for matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with λ>λF\lambda > \lambda_F, in terms of orbitals occupation numbers, level densities and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using bivariate tt-distribution, the theory extends below from the Gaussian regime to the BW regime up to λ=λc\lambda=\lambda_c. This is well tested in numerical calculations for six spinless fermions in twelve single particle states.Comment: 7 pages, 2 figure

    Geometric scaling in the spectrum of an electron captured by a stationary finite dipole

    Full text link
    We examine the energy spectrum of a charged particle in the presence of a {\it non-rotating} finite electric dipole. For {\emph{any}} value of the dipole moment pp above a certain critical value p_{\mathrm{c}}$ an infinite series of bound states arises of which the energy eigenvalues obey an Efimov-like geometric scaling law with an accumulation point at zero energy. These properties are largely destroyed in a realistic situation when rotations are included. Nevertheless, our analysis of the idealised case is of interest because it may possibly be realised using quantum dots as artificial atoms.Comment: 5 figures; references added, outlook section reduce
    • …
    corecore