4,631 research outputs found
Spitzer/MIPS 24 μm Observations of HD 209458b: Three Eclipses, Two and a Half Transits, and a Phase Curve Corrupted by Instrumental Sensitivity Variations
We report the results of an analysis of all Spitzer/MIPS 24 μm observations of HD 209458b, one of the touchstone objects in the study of irradiated giant planet atmospheres. Altogether, we analyze two and a half transits, three eclipses, and a 58 hr near-continuous observation designed to detect the planet's thermal phase curve. The results of our analysis are: (1) a mean transit depth of 1.484% ± 0.033%, consistent with previous measurements and showing no evidence of variability in transit depth at the 3% level. (2) A mean eclipse depth of 0.338% ± 0.026%, somewhat higher than that previously reported for this system; this new value brings observations into better agreement with models. From this eclipse depth we estimate an average dayside brightness temperature of 1320 ± 80 K; the dayside flux shows no evidence of variability at the 12% level. (3) Eclipses in the system occur 32 ± 129 s earlier than would be expected from a circular orbit, which constrains the orbital quantity ecos ω to be 0.00004 ± 0.00033. This result is fully consistent with a circular orbit and sets an upper limit of 140 m s^(–1) (3σ) on any eccentricity-induced velocity offset during transit. The phase curve observations (including one of the transits) exhibit an anomalous trend similar to the detector ramp seen in previous Spitzer/IRAC observations; by modeling this ramp we recover the system parameters for this transit. The long-duration photometry which follows the ramp and transit exhibits a gradual ~0.2% decrease in flux over ~30 hr. This effect is similar to that seen in pre-launch calibration data taken with the 24 μm array and is better fit by an instrumental model than a model invoking planetary emission. The large uncertainties associated with this poorly understood, likely instrumental effect prevent us from usefully constraining the planet's thermal phase curve. Our observations highlight the need for a thorough understanding of detector-related instrumental effects on long timescales when making the high-precision mid-infrared measurements planned for future missions such as EChO, SPICA, and the James Webb Space Telescope
The 8 Micron Phase Variation of the Hot Saturn HD 149026b
We monitor the star HD 149026 and its Saturn-mass planet at 8.0 micron over
slightly more than half an orbit using the Infrared Array Camera (IRAC) on the
Spitzer Space Telescope. We find an increase of 0.0227% +/- 0.0066% (3.4 sigma
significance) in the combined planet-star flux during this interval. The
minimum flux from the planet is 45% +/- 19% of the maximum planet flux,
corresponding to a difference in brightness temperature of 480 +/- 140 K
between the two hemispheres. We derive a new secondary eclipse depth of 0.0411%
+/- 0.0076% in this band, corresponding to a dayside brightness temperature of
1440 +/- 150 K. Our new secondary eclipse depth is half that of a previous
measurement (3.0 sigma difference) in this same bandpass by Harrington et al.
(2007). We re-fit the Harrington et al. (2007) data and obtain a comparably
good fit with a smaller eclipse depth that is consistent with our new value. In
contrast to earlier claims, our new eclipse depth suggests that this planet's
dayside emission spectrum is relatively cool, with an 8 micron brightness
temperature that is less than the maximum planet-wide equilibrium temperature.
We measure the interval between the transit and secondary eclipse and find that
that the secondary eclipse occurs 20.9 +7.2 / -6.5 minutes earlier (2.9 sigma)
than predicted for a circular orbit, a marginally significant result. This
corresponds to e*cos(omega) = -0.0079 +0.0027 / -0.0025 where e is the planet's
orbital eccentricity and omega is the argument of pericenter.Comment: 17 pages, 12 figure, accepted for publication in Ap
Double Strand Breaks Can Initiate Gene Silencing and SIRT1-Dependent Onset of DNA Methylation in an Exogenous Promoter CpG Island
Chronic exposure to inducers of DNA base oxidation and single and double strand breaks contribute to tumorigenesis. In addition to the genetic changes caused by this DNA damage, such tumors often contain epigenetically silenced genes with aberrant promoter region CpG island DNA hypermethylation. We herein explore the relationships between such DNA damage and epigenetic gene silencing using an experimental model in which we induce a defined double strand break in an exogenous promoter construct of the E-cadherin CpG island, which is frequently aberrantly DNA hypermethylated in epithelial cancers. Following the onset of repair of the break, we observe recruitment to the site of damage of key proteins involved in establishing and maintaining transcriptional repression, namely SIRT1, EZH2, DNMT1, and DNMT3B, and the appearance of the silencing histone modifications, hypoacetyl H4K16, H3K9me2 and me3, and H3K27me3. Although in most cells selected after the break, DNA repair occurs faithfully with preservation of activity of the promoter, a small percentage of the plated cells demonstrate induction of heritable silencing. The chromatin around the break site in such a silent clone is enriched for most of the above silent chromatin proteins and histone marks, and the region harbors the appearance of increasing DNA methylation in the CpG island of the promoter. During the acute break, SIRT1 appears to be required for the transient recruitment of DNMT3B and subsequent methylation of the promoter in the silent clones. Taken together, our data suggest that normal repair of a DNA break can occasionally cause heritable silencing of a CpG island–containing promoter by recruitment of proteins involved in silencing. Furthermore, with contribution of the stress-related protein SIRT1, the break can lead to the onset of aberrant CpG island DNA methylation, which is frequently associated with tight gene silencing in cancer
A map of the day-night contrast of the extrasolar planet HD 189733b
"Hot Jupiter" extrasolar planets are expected to be tidally locked because
they are close (<0.05 astronomical units, where 1 AU is the average Sun-Earth
distance) to their parent stars, resulting in permanent daysides and
nightsides. By observing systems where the planet and star periodically eclipse
each other, several groups have been able to estimate the temperatures of the
daysides of these planets. A key question is whether the atmosphere is able to
transport the energy incident upon the dayside to the nightside, which will
determine the temperature at different points on the planet's surface. Here we
report observations of HD 189733, the closest of these eclipsing planetary
systems, over half an orbital period, from which we can construct a 'map' of
the distribution of temperatures. We detected the increase in brightness as the
dayside of the planet rotated into view. We estimate a minimum brightness
temperature of 973 +/- 33 K and a maximum brightness temperature of 1212 +/- 11
K at a wavelength of 8 microns, indicating that energy from the irradiated
dayside is efficiently redistributed throughout the atmosphere, in contrast to
a recent claim for another hot Jupiter. Our data indicate that the peak
hemisphere-integrated brightness occurs 166 degrees before opposition,
corresponding to a hot spot shifted east of the substellar point. The secondary
eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than
predicted, which may indicate a slightly eccentric orbit.Comment: To appear in the May 10 2007 issue of Nature, 10 pages, 2 black and
white figures, 1 colo
Can screening and brief intervention lead to population-level reductions in alcohol-related harm?
A distinction is made between the clinical and public health justifications for screening and brief intervention (SBI) against hazardous and harmful alcohol consumption. Early claims for a public health benefit of SBI derived from research on general medical practitioners' (GPs') advice on smoking cessation, but these claims have not been realized, mainly because GPs have not incorporated SBI into their routine practice. A recent modeling exercise estimated that, if all GPs in England screened every patient at their next consultation, 96% of the general population would be screened over 10 years, with 70-79% of excessive drinkers receiving brief interventions (BI); assuming a 10% success rate, this would probably amount to a population-level effect of SBI. Thus, a public health benefit for SBI presupposes widespread screening; but recent government policy in England favors targeted versus universal screening, and in Scotland screening is based on new registrations and clinical presentation. A recent proposal for a national screening program was rejected by the UK National Health Service's National Screening Committee because 1) there was no good evidence that SBI led to reductions in mortality or morbidity, and 2) a safe, simple, precise, and validated screening test was not available. Even in countries like Sweden and Finland, where expensive national programs to disseminate SBI have been implemented, only a minority of the population has been asked about drinking during health-care visits, and a minority of excessive drinkers has been advised to cut down. Although there has been research on the relationship between treatment for alcohol problems and population-level effects, there has been no such research for SBI, nor have there been experimental investigations of its relationship with population-level measures of alcohol-related harm. These are strongly recommended. In this article, conditions that would allow a population-level effect of SBI to occur are reviewed, including their political acceptability. It is tentatively concluded that widespread dissemination of SBI, without the implementation of alcohol control measures, might have indirect influences on levels of consumption and harm but would be unlikely on its own to result in public health benefits. However, if and when alcohol control measures were introduced, SBI would still have an important role in the battle against alcohol-related harm
Obliquity Constraints on an Extrasolar Planetary-Mass Companion
We place the first constraints on the obliquity of a planetary-mass companion outside of the solar system. Our target is the directly imaged system 2MASS J01225093–2439505 (2M0122), which consists of a 120 Myr 0.4 M⊙ star hosting a 12–27 M_J companion at 50 au. We constrain all three of the system's angular-momentum vectors: how the companion spin axis, the stellar spin axis, and the orbit normal are inclined relative to our line of sight. To accomplish this, we measure projected rotation rates (v sin i) for both the star and the companion using new near-infrared high-resolution spectra with NIRSPEC at Keck Observatory. We combine these with a new stellar photometric rotation period from TESS and a published companion rotation period from Hubble Space Telescope to obtain spin-axis inclinations for both objects. We also fitted multiple epochs of astrometry, including a new observation with NIRC2/Keck, to measure 2M0122b's orbital inclination. The three line-of-sight inclinations place limits on the true de-projected companion obliquity and stellar obliquity. We find that while the stellar obliquity marginally prefers alignment, the companion obliquity tentatively favors misalignment. We evaluate possible origin scenarios. While collisions, secular spin–orbit resonances, and Kozai–Lidov oscillations are unlikely, formation by gravitational instability in a gravito-turbulent disk—the scenario favored for brown dwarf companions to stars—appears promising
Phase curves of WASP-33b and HD 149026b and a New Correlation Between Phase Curve Offset and Irradiation Temperature
We present new 3.6 and 4.5 Spitzer phase curves for the highly
irradiated hot Jupiter WASP-33b and the unusually dense Saturn-mass planet HD
149026b. As part of this analysis, we develop a new variant of pixel level
decorrelation that is effective at removing intrapixel sensitivity variations
for long observations (>10 hours) where the position of the star can vary by a
significant fraction of a pixel. Using this algorithm, we measure eclipse
depths, phase amplitudes, and phase offsets for both planets at 3.6 and
4.5 . We use a simple toy model to show that WASP-33b's phase offset,
albedo, and heat recirculation efficiency are largely similar to those of other
hot Jupiters despite its very high irradiation. On the other hand, our fits for
HD 149026b prefer a very high albedo and an unusually high recirculation
efficiency. We also compare our results to predictions from general circulation
models, and find that while neither are a good match to the data, the
discrepancies for HD 149026b are especially large. We speculate that this may
be related to its high bulk metallicity, which could lead to enhanced
atmospheric opacities and the formation of reflective cloud layers in localized
regions of the atmosphere. We then place these two planets in a broader context
by exploring relationships between the temperatures, albedos, heat transport
efficiencies, and phase offsets of all planets with published thermal phase
curves. We find a striking relationship between phase offset and irradiation
temperature--the former drops with increasing temperature until around 3400 K,
and rises thereafter. Although some aspects of this trend are mirrored in the
circulation models, there are notable differences that provide important clues
for future modeling efforts
Behavior change interventions: the potential of ontologies for advancing science and practice
A central goal of behavioral medicine is the creation of evidence-based interventions for promoting behavior change. Scientific knowledge about behavior change could be more effectively accumulated using "ontologies." In information science, an ontology is a systematic method for articulating a "controlled vocabulary" of agreed-upon terms and their inter-relationships. It involves three core elements: (1) a controlled vocabulary specifying and defining existing classes; (2) specification of the inter-relationships between classes; and (3) codification in a computer-readable format to enable knowledge generation, organization, reuse, integration, and analysis. This paper introduces ontologies, provides a review of current efforts to create ontologies related to behavior change interventions and suggests future work. This paper was written by behavioral medicine and information science experts and was developed in partnership between the Society of Behavioral Medicine's Technology Special Interest Group (SIG) and the Theories and Techniques of Behavior Change Interventions SIG. In recent years significant progress has been made in the foundational work needed to develop ontologies of behavior change. Ontologies of behavior change could facilitate a transformation of behavioral science from a field in which data from different experiments are siloed into one in which data across experiments could be compared and/or integrated. This could facilitate new approaches to hypothesis generation and knowledge discovery in behavioral science
- …