287 research outputs found

    Lattice density-functional theory of surface melting: the effect of a square-gradient correction

    Full text link
    I use the method of classical density-functional theory in the weighted-density approximation of Tarazona to investigate the phase diagram and the interface structure of a two-dimensional lattice-gas model with three phases -- vapour, liquid, and triangular solid. While a straightforward mean-field treatment of the interparticle attraction is unable to give a stable liquid phase, the correct phase diagram is obtained when including a suitably chosen square-gradient term in the system grand potential. Taken this theory for granted, I further examine the structure of the solid-vapour interface as the triple point is approached from low temperature. Surprisingly, a novel phase (rather than the liquid) is found to grow at the interface, exhibiting an unusually long modulation along the interface normal. The conventional surface-melting behaviour is recovered only by artificially restricting the symmetries being available to the density field.Comment: 16 pages, 6 figure

    Weighted-density approximation for general nonuniform fluid mixtures

    Get PDF
    In order to construct a general density-functional theory for nonuniform fluid mixtures, we propose an extension to multicomponent systems of the weighted-density approximation (WDA) of Curtin and Ashcroft [Phys. Rev. A 32, 2909 (1985)]. This extension corrects a deficiency in a similar extension proposed earlier by Denton and Ashcroft [Phys. Rev. A 42, 7312 (1990)], in that that functional cannot be applied to the multi-component nonuniform fluid systems with spatially varying composition, such as solid-fluid interfaces. As a test of the accuracy of our new functional, we apply it to the calculation of the freezing phase diagram of a binary hard-sphere fluid, and compare the results to simulation and the Denton-Ashcroft extension.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E as Brief Repor

    Direct calculation of the hard-sphere crystal/melt interfacial free energy

    Get PDF
    We present a direct calculation by molecular-dynamics computer simulation of the crystal/melt interfacial free energy, γ\gamma, for a system of hard spheres of diameter σ\sigma. The calculation is performed by thermodynamic integration along a reversible path defined by cleaving, using specially constructed movable hard-sphere walls, separate bulk crystal and fluid systems, which are then merged to form an interface. We find the interfacial free energy to be slightly anisotropic with γ\gamma = 0.62±0.01\pm 0.01, 0.64±0.01\pm 0.01 and 0.58±0.01kBT/σ2\pm 0.01 k_BT/\sigma^2 for the (100), (110) and (111) fcc crystal/fluid interfaces, respectively. These values are consistent with earlier density functional calculations and recent experiments measuring the crystal nucleation rates from colloidal fluids of polystyrene spheres that have been interpreted [Marr and Gast, Langmuir {\bf 10}, 1348 (1994)] to give an estimate of γ\gamma for the hard-sphere system of 0.55±0.02kBT/σ20.55 \pm 0.02 k_BT/\sigma^2, slightly lower than the directly determined value reported here.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Density-Functional Theory of Quantum Freezing: Sensitivity to Liquid-State Structure and Statistics

    Full text link
    Density-functional theory is applied to compute the ground-state energies of quantum hard-sphere solids. The modified weighted-density approximation is used to map both the Bose and the Fermi solid onto a corresponding uniform Bose liquid, assuming negligible exchange for the Fermi solid. The required liquid-state input data are obtained from a paired phonon analysis and the Feynman approximation, connecting the static structure factor and the linear response function. The Fermi liquid is treated by the Wu-Feenberg cluster expansion, which approximately accounts for the effects of antisymmetry. Liquid-solid transitions for both systems are obtained with no adjustment of input data. Limited quantitative agreement with simulation indicates a need for further improvement of the liquid-state input through practical alternatives to the Feynman approximation.Comment: IOP-TeX, 21 pages + 7 figures, to appear, J. Phys.: Condens. Matte

    Lattice-switch Monte Carlo

    Full text link
    We present a Monte Carlo method for the direct evaluation of the difference between the free energies of two crystal structures. The method is built on a lattice-switch transformation that maps a configuration of one structure onto a candidate configuration of the other by `switching' one set of lattice vectors for the other, while keeping the displacements with respect to the lattice sites constant. The sampling of the displacement configurations is biased, multicanonically, to favor paths leading to `gateway' arrangements for which the Monte Carlo switch to the candidate configuration will be accepted. The configurations of both structures can then be efficiently sampled in a single process, and the difference between their free energies evaluated from their measured probabilities. We explore and exploit the method in the context of extensive studies of systems of hard spheres. We show that the efficiency of the method is controlled by the extent to which the switch conserves correlated microstructure. We also show how, microscopically, the procedure works: the system finds gateway arrangements which fulfill the sampling bias intelligently. We establish, with high precision, the differences between the free energies of the two close packed structures (fcc and hcp) in both the constant density and the constant pressure ensembles.Comment: 34 pages, 9 figures, RevTeX. To appear in Phys. Rev.

    The low temperature interface between the gas and solid phases of hard spheres with a short-ranged attraction

    Get PDF
    At low temperature, spheres with a very short-ranged attraction exist as a close-packed solid coexisting with an infinitely dilute gas. We find that the ratio of the interfacial tension between these two phases to the thermal energy diverges as the range of the attraction goes to zero. The large tensions when the interparticle attractions are short-ranged may be why globular proteins only crystallise over a narrow range of conditions.Comment: 6 pages, no figures (v2 has change of notation to agree with that of Stell

    Probing Single-Electron Spin Decoherence in Quantum Dots using Charged Excitons

    Full text link
    We propose to use optical detection of magnetic resonance (ODMR) to measure the decoherence time T_{2} of a single electron spin in a semiconductor quantum dot. The electron is in one of the spin 1/2 states and a circularly polarized laser can only create an optical excitation for one of the electron spin states due to Pauli blocking. An applied electron spin resonance (ESR) field leads to Rabi spin flips and thus to a modulation of the photoluminescence or, alternatively, of the photocurrent. This allows one to measure the ESR linewidth and the coherent Rabi oscillations, from which the electron spin decoherence can be determined. We study different possible schemes for such an ODMR setup, including cw or pulsed laser excitation.Comment: 8 pages, 7 figures. Proceedings of the PASPS3 conference, Santa Barbara, CA (USA). To appear in the Journal of Superconductivit

    Calcium scoring using 64-slice MDCT, dual source CT and EBT: a comparative phantom study

    Get PDF
    Purpose Assessment of calcium scoring (Ca-scoring) on a 64-slice multi-detector computed tomography (MDCT) scanner, a dual-source computed tomography (DSCT) scanner and an electron beam tomography (EBT) scanner with a moving cardiac phantom as a function of heart rate, slice thickness and calcium density. Methods and materials Three artificial arteries with inserted calcifications of different sizes and densities were scanned at rest (0 beats per minute) and at 50–110 beats per minute (bpm) with an interval of 10 bpm using 64-slice MDCT, DSCT and EBT. Images were reconstructed with a slice thickness of 0.6 and 3.0 mm. Agatston score, volume score and equivalent mass score were determined for each artery. A cardiac motion susceptibility (CMS) index was introduced to assess the susceptibility of Ca-scoring to heart rate. In addition, a difference (Δ) index was introduced to assess the difference of absolute Ca-scoring on MDCT and DSCT with EBT. Results Ca-score is relatively constant up to 60 bpm and starts to decrease or increase above 70 bpm, depending on scoring method, calcification density and slice thickness. EBT showed the least susceptibility to cardiac motion with the smallest average CMS-index (2.5). The average CMS-index of 64-slice MDCT (9.0) is approximately 2.5 times the average CMS-index of DSCT (3.6). The use of a smaller slice thickness decreases the CMS-index for both CT-modalities. The Δ-index for DSCT at 0.6 mm (53.2) is approximately 30% lower than the Δ-index for 64-slice MDCT at 0.6 mm (72.0). The Δ-indexes at 3.0 mm are approximately equal for both modalities (96.9 and 102.0 for 64-slice MDCT and DSCT respectively). Conclusion Ca-scoring is influenced by heart rate, slice thickness and modality used. Ca-scoring on DSCT is approximately 50% less susceptible to cardiac motion as 64-slice MDCT. DSCT offers a better approximation of absolute calcium score on EBT than 64-slice MDCT when using a smaller slice thickness. A smaller slice thickness reduces the susceptibility to cardiac motion and reduces the difference between CT-data and EBT-data. The best approximation of EBT on CT is found for DSCT with a slice thickness of 0.6 mm

    Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion

    Full text link
    Computer simulations and theory are used to systematically investigate how the effective force between two big colloidal spheres in a sea of small spheres depends on the basic (big-small and small-small) interactions. The latter are modeled as hard-core pair potentials with a Yukawa tail which can be both repulsive or attractive. For a repulsive small-small interaction, the effective force follows the trends as predicted by a mapping onto an effective non-additive hard-core mixture: both a depletion attraction and an accumulation repulsion caused by small spheres adsorbing onto the big ones can be obtained depending on the sign of the big-small interaction. For repulsive big-small interactions, the effect of adding a small-small attraction also follows the trends predicted by the mapping. But a more subtle ``repulsion through attraction'' effect arises when both big-small and small-small attractions occur: upon increasing the strength of the small-small interaction, the effective potential becomes more repulsive. We have further tested several theoretical methods against our computer simulations: The superposition approximation works best for an added big-small repulsion, and breaks down for a strong big-small attraction, while density functional theory is very accurate for any big-small interaction when the small particles are pure hard-spheres. The theoretical methods perform most poorly for small-small attractions.Comment: submitted to PRE; New version includes an important quantitative correction to several of the simulations. The main conclusions remain unchanged thoug
    corecore